Description: For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reltre | |- A. x e. RR E. y e. RR y < x |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | |- ( y = ( x - 1 ) -> ( y < x <-> ( x - 1 ) < x ) ) |
|
| 2 | peano2rem | |- ( x e. RR -> ( x - 1 ) e. RR ) |
|
| 3 | ltm1 | |- ( x e. RR -> ( x - 1 ) < x ) |
|
| 4 | 1 2 3 | rspcedvdw | |- ( x e. RR -> E. y e. RR y < x ) |
| 5 | 4 | rgen | |- A. x e. RR E. y e. RR y < x |