Description: For all real numbers there is a smaller real number. (Contributed by AV, 5-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reltre | ⊢ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑦 = ( 𝑥 − 1 ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 − 1 ) < 𝑥 ) ) | |
| 2 | peano2rem | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) ∈ ℝ ) | |
| 3 | ltm1 | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 − 1 ) < 𝑥 ) | |
| 4 | 1 2 3 | rspcedvdw | ⊢ ( 𝑥 ∈ ℝ → ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 ) |
| 5 | 4 | rgen | ⊢ ∀ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ 𝑦 < 𝑥 |