Step |
Hyp |
Ref |
Expression |
1 |
|
ssv |
|- B C_ _V |
2 |
|
ssres2 |
|- ( B C_ _V -> ( ( A \ `' `' A ) |` B ) C_ ( ( A \ `' `' A ) |` _V ) ) |
3 |
1 2
|
ax-mp |
|- ( ( A \ `' `' A ) |` B ) C_ ( ( A \ `' `' A ) |` _V ) |
4 |
|
cnvnonrel |
|- `' ( A \ `' `' A ) = (/) |
5 |
4
|
cnveqi |
|- `' `' ( A \ `' `' A ) = `' (/) |
6 |
|
cnvcnv2 |
|- `' `' ( A \ `' `' A ) = ( ( A \ `' `' A ) |` _V ) |
7 |
|
cnv0 |
|- `' (/) = (/) |
8 |
5 6 7
|
3eqtr3i |
|- ( ( A \ `' `' A ) |` _V ) = (/) |
9 |
3 8
|
sseqtri |
|- ( ( A \ `' `' A ) |` B ) C_ (/) |
10 |
|
ss0b |
|- ( ( ( A \ `' `' A ) |` B ) C_ (/) <-> ( ( A \ `' `' A ) |` B ) = (/) ) |
11 |
9 10
|
mpbi |
|- ( ( A \ `' `' A ) |` B ) = (/) |