Metamath Proof Explorer


Theorem resnonrel

Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion resnonrel
|- ( ( A \ `' `' A ) |` B ) = (/)

Proof

Step Hyp Ref Expression
1 ssv
 |-  B C_ _V
2 ssres2
 |-  ( B C_ _V -> ( ( A \ `' `' A ) |` B ) C_ ( ( A \ `' `' A ) |` _V ) )
3 1 2 ax-mp
 |-  ( ( A \ `' `' A ) |` B ) C_ ( ( A \ `' `' A ) |` _V )
4 cnvnonrel
 |-  `' ( A \ `' `' A ) = (/)
5 4 cnveqi
 |-  `' `' ( A \ `' `' A ) = `' (/)
6 cnvcnv2
 |-  `' `' ( A \ `' `' A ) = ( ( A \ `' `' A ) |` _V )
7 cnv0
 |-  `' (/) = (/)
8 5 6 7 3eqtr3i
 |-  ( ( A \ `' `' A ) |` _V ) = (/)
9 3 8 sseqtri
 |-  ( ( A \ `' `' A ) |` B ) C_ (/)
10 ss0b
 |-  ( ( ( A \ `' `' A ) |` B ) C_ (/) <-> ( ( A \ `' `' A ) |` B ) = (/) )
11 9 10 mpbi
 |-  ( ( A \ `' `' A ) |` B ) = (/)