Metamath Proof Explorer


Theorem resnonrel

Description: A restriction of the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020)

Ref Expression
Assertion resnonrel ( ( 𝐴 𝐴 ) ↾ 𝐵 ) = ∅

Proof

Step Hyp Ref Expression
1 ssv 𝐵 ⊆ V
2 ssres2 ( 𝐵 ⊆ V → ( ( 𝐴 𝐴 ) ↾ 𝐵 ) ⊆ ( ( 𝐴 𝐴 ) ↾ V ) )
3 1 2 ax-mp ( ( 𝐴 𝐴 ) ↾ 𝐵 ) ⊆ ( ( 𝐴 𝐴 ) ↾ V )
4 cnvnonrel ( 𝐴 𝐴 ) = ∅
5 4 cnveqi ( 𝐴 𝐴 ) =
6 cnvcnv2 ( 𝐴 𝐴 ) = ( ( 𝐴 𝐴 ) ↾ V )
7 cnv0 ∅ = ∅
8 5 6 7 3eqtr3i ( ( 𝐴 𝐴 ) ↾ V ) = ∅
9 3 8 sseqtri ( ( 𝐴 𝐴 ) ↾ 𝐵 ) ⊆ ∅
10 ss0b ( ( ( 𝐴 𝐴 ) ↾ 𝐵 ) ⊆ ∅ ↔ ( ( 𝐴 𝐴 ) ↾ 𝐵 ) = ∅ )
11 9 10 mpbi ( ( 𝐴 𝐴 ) ↾ 𝐵 ) = ∅