| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssv |
⊢ 𝐵 ⊆ V |
| 2 |
|
ssres2 |
⊢ ( 𝐵 ⊆ V → ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ↾ 𝐵 ) ⊆ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ↾ V ) ) |
| 3 |
1 2
|
ax-mp |
⊢ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ↾ 𝐵 ) ⊆ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ↾ V ) |
| 4 |
|
cnvnonrel |
⊢ ◡ ( 𝐴 ∖ ◡ ◡ 𝐴 ) = ∅ |
| 5 |
4
|
cnveqi |
⊢ ◡ ◡ ( 𝐴 ∖ ◡ ◡ 𝐴 ) = ◡ ∅ |
| 6 |
|
cnvcnv2 |
⊢ ◡ ◡ ( 𝐴 ∖ ◡ ◡ 𝐴 ) = ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ↾ V ) |
| 7 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
| 8 |
5 6 7
|
3eqtr3i |
⊢ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ↾ V ) = ∅ |
| 9 |
3 8
|
sseqtri |
⊢ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ↾ 𝐵 ) ⊆ ∅ |
| 10 |
|
ss0b |
⊢ ( ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ↾ 𝐵 ) ⊆ ∅ ↔ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ↾ 𝐵 ) = ∅ ) |
| 11 |
9 10
|
mpbi |
⊢ ( ( 𝐴 ∖ ◡ ◡ 𝐴 ) ↾ 𝐵 ) = ∅ |