| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressascl.a |
|- A = ( algSc ` W ) |
| 2 |
|
ressascl.x |
|- X = ( W |`s S ) |
| 3 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 4 |
2 3
|
resssca |
|- ( S e. ( SubRing ` W ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 5 |
4
|
fveq2d |
|- ( S e. ( SubRing ` W ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` X ) ) ) |
| 6 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 7 |
2 6
|
ressvsca |
|- ( S e. ( SubRing ` W ) -> ( .s ` W ) = ( .s ` X ) ) |
| 8 |
|
eqidd |
|- ( S e. ( SubRing ` W ) -> x = x ) |
| 9 |
|
eqid |
|- ( 1r ` W ) = ( 1r ` W ) |
| 10 |
2 9
|
subrg1 |
|- ( S e. ( SubRing ` W ) -> ( 1r ` W ) = ( 1r ` X ) ) |
| 11 |
7 8 10
|
oveq123d |
|- ( S e. ( SubRing ` W ) -> ( x ( .s ` W ) ( 1r ` W ) ) = ( x ( .s ` X ) ( 1r ` X ) ) ) |
| 12 |
5 11
|
mpteq12dv |
|- ( S e. ( SubRing ` W ) -> ( x e. ( Base ` ( Scalar ` W ) ) |-> ( x ( .s ` W ) ( 1r ` W ) ) ) = ( x e. ( Base ` ( Scalar ` X ) ) |-> ( x ( .s ` X ) ( 1r ` X ) ) ) ) |
| 13 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 14 |
1 3 13 6 9
|
asclfval |
|- A = ( x e. ( Base ` ( Scalar ` W ) ) |-> ( x ( .s ` W ) ( 1r ` W ) ) ) |
| 15 |
|
eqid |
|- ( algSc ` X ) = ( algSc ` X ) |
| 16 |
|
eqid |
|- ( Scalar ` X ) = ( Scalar ` X ) |
| 17 |
|
eqid |
|- ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) |
| 18 |
|
eqid |
|- ( .s ` X ) = ( .s ` X ) |
| 19 |
|
eqid |
|- ( 1r ` X ) = ( 1r ` X ) |
| 20 |
15 16 17 18 19
|
asclfval |
|- ( algSc ` X ) = ( x e. ( Base ` ( Scalar ` X ) ) |-> ( x ( .s ` X ) ( 1r ` X ) ) ) |
| 21 |
12 14 20
|
3eqtr4g |
|- ( S e. ( SubRing ` W ) -> A = ( algSc ` X ) ) |