| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ressascl.a |
⊢ 𝐴 = ( algSc ‘ 𝑊 ) |
| 2 |
|
ressascl.x |
⊢ 𝑋 = ( 𝑊 ↾s 𝑆 ) |
| 3 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 4 |
2 3
|
resssca |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 5 |
4
|
fveq2d |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 6 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 7 |
2 6
|
ressvsca |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 8 |
|
eqidd |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑥 = 𝑥 ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) |
| 10 |
2 9
|
subrg1 |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑋 ) ) |
| 11 |
7 8 10
|
oveq123d |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) |
| 12 |
5 11
|
mpteq12dv |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) ) |
| 13 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 14 |
1 3 13 6 9
|
asclfval |
⊢ 𝐴 = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 1r ‘ 𝑊 ) ) ) |
| 15 |
|
eqid |
⊢ ( algSc ‘ 𝑋 ) = ( algSc ‘ 𝑋 ) |
| 16 |
|
eqid |
⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) |
| 17 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) |
| 18 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑋 ) |
| 19 |
|
eqid |
⊢ ( 1r ‘ 𝑋 ) = ( 1r ‘ 𝑋 ) |
| 20 |
15 16 17 18 19
|
asclfval |
⊢ ( algSc ‘ 𝑋 ) = ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) ( 1r ‘ 𝑋 ) ) ) |
| 21 |
12 14 20
|
3eqtr4g |
⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 = ( algSc ‘ 𝑋 ) ) |