| Step |
Hyp |
Ref |
Expression |
| 1 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 2 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 3 |
2
|
restid |
|- ( ( topGen ` ran (,) ) e. Top -> ( ( topGen ` ran (,) ) |`t RR ) = ( topGen ` ran (,) ) ) |
| 4 |
1 3
|
ax-mp |
|- ( ( topGen ` ran (,) ) |`t RR ) = ( topGen ` ran (,) ) |
| 5 |
|
iccssre |
|- ( ( x e. RR /\ y e. RR ) -> ( x [,] y ) C_ RR ) |
| 6 |
5
|
rgen2 |
|- A. x e. RR A. y e. RR ( x [,] y ) C_ RR |
| 7 |
|
ssid |
|- RR C_ RR |
| 8 |
|
reconn |
|- ( RR C_ RR -> ( ( ( topGen ` ran (,) ) |`t RR ) e. Conn <-> A. x e. RR A. y e. RR ( x [,] y ) C_ RR ) ) |
| 9 |
7 8
|
ax-mp |
|- ( ( ( topGen ` ran (,) ) |`t RR ) e. Conn <-> A. x e. RR A. y e. RR ( x [,] y ) C_ RR ) |
| 10 |
6 9
|
mpbir |
|- ( ( topGen ` ran (,) ) |`t RR ) e. Conn |
| 11 |
4 10
|
eqeltrri |
|- ( topGen ` ran (,) ) e. Conn |