| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reusv3.1 |  |-  ( y = z -> ( ph <-> ps ) ) | 
						
							| 2 |  | reusv3.2 |  |-  ( y = z -> C = D ) | 
						
							| 3 | 2 | eqeq2d |  |-  ( y = z -> ( x = C <-> x = D ) ) | 
						
							| 4 | 1 3 | imbi12d |  |-  ( y = z -> ( ( ph -> x = C ) <-> ( ps -> x = D ) ) ) | 
						
							| 5 | 4 | cbvralvw |  |-  ( A. y e. B ( ph -> x = C ) <-> A. z e. B ( ps -> x = D ) ) | 
						
							| 6 | 5 | biimpi |  |-  ( A. y e. B ( ph -> x = C ) -> A. z e. B ( ps -> x = D ) ) | 
						
							| 7 |  | raaanv |  |-  ( A. y e. B A. z e. B ( ( ph -> x = C ) /\ ( ps -> x = D ) ) <-> ( A. y e. B ( ph -> x = C ) /\ A. z e. B ( ps -> x = D ) ) ) | 
						
							| 8 |  | anim12 |  |-  ( ( ( ph -> x = C ) /\ ( ps -> x = D ) ) -> ( ( ph /\ ps ) -> ( x = C /\ x = D ) ) ) | 
						
							| 9 |  | eqtr2 |  |-  ( ( x = C /\ x = D ) -> C = D ) | 
						
							| 10 | 8 9 | syl6 |  |-  ( ( ( ph -> x = C ) /\ ( ps -> x = D ) ) -> ( ( ph /\ ps ) -> C = D ) ) | 
						
							| 11 | 10 | 2ralimi |  |-  ( A. y e. B A. z e. B ( ( ph -> x = C ) /\ ( ps -> x = D ) ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) | 
						
							| 12 | 7 11 | sylbir |  |-  ( ( A. y e. B ( ph -> x = C ) /\ A. z e. B ( ps -> x = D ) ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) | 
						
							| 13 | 6 12 | mpdan |  |-  ( A. y e. B ( ph -> x = C ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) | 
						
							| 14 | 13 | rexlimivw |  |-  ( E. x e. A A. y e. B ( ph -> x = C ) -> A. y e. B A. z e. B ( ( ph /\ ps ) -> C = D ) ) |