Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
|- ( A e. V -> A e. _V ) |
2 |
|
prssi |
|- ( ( x e. A /\ y e. A ) -> { x , y } C_ A ) |
3 |
|
df2o3 |
|- 2o = { (/) , 1o } |
4 |
|
0ex |
|- (/) e. _V |
5 |
4
|
a1i |
|- ( x =/= y -> (/) e. _V ) |
6 |
|
1oex |
|- 1o e. _V |
7 |
6
|
a1i |
|- ( x =/= y -> 1o e. _V ) |
8 |
|
vex |
|- x e. _V |
9 |
8
|
a1i |
|- ( x =/= y -> x e. _V ) |
10 |
|
vex |
|- y e. _V |
11 |
10
|
a1i |
|- ( x =/= y -> y e. _V ) |
12 |
|
1n0 |
|- 1o =/= (/) |
13 |
12
|
necomi |
|- (/) =/= 1o |
14 |
13
|
a1i |
|- ( x =/= y -> (/) =/= 1o ) |
15 |
|
id |
|- ( x =/= y -> x =/= y ) |
16 |
5 7 9 11 14 15
|
en2prd |
|- ( x =/= y -> { (/) , 1o } ~~ { x , y } ) |
17 |
3 16
|
eqbrtrid |
|- ( x =/= y -> 2o ~~ { x , y } ) |
18 |
|
endom |
|- ( 2o ~~ { x , y } -> 2o ~<_ { x , y } ) |
19 |
17 18
|
syl |
|- ( x =/= y -> 2o ~<_ { x , y } ) |
20 |
|
domssr |
|- ( ( A e. _V /\ { x , y } C_ A /\ 2o ~<_ { x , y } ) -> 2o ~<_ A ) |
21 |
20
|
3expib |
|- ( A e. _V -> ( ( { x , y } C_ A /\ 2o ~<_ { x , y } ) -> 2o ~<_ A ) ) |
22 |
2 19 21
|
syl2ani |
|- ( A e. _V -> ( ( ( x e. A /\ y e. A ) /\ x =/= y ) -> 2o ~<_ A ) ) |
23 |
22
|
expd |
|- ( A e. _V -> ( ( x e. A /\ y e. A ) -> ( x =/= y -> 2o ~<_ A ) ) ) |
24 |
23
|
rexlimdvv |
|- ( A e. _V -> ( E. x e. A E. y e. A x =/= y -> 2o ~<_ A ) ) |
25 |
1 24
|
syl |
|- ( A e. V -> ( E. x e. A E. y e. A x =/= y -> 2o ~<_ A ) ) |
26 |
25
|
imp |
|- ( ( A e. V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A ) |