| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|- ( A e. V -> A e. _V ) |
| 2 |
|
prssi |
|- ( ( x e. A /\ y e. A ) -> { x , y } C_ A ) |
| 3 |
|
df2o3 |
|- 2o = { (/) , 1o } |
| 4 |
|
0ex |
|- (/) e. _V |
| 5 |
4
|
a1i |
|- ( x =/= y -> (/) e. _V ) |
| 6 |
|
1oex |
|- 1o e. _V |
| 7 |
6
|
a1i |
|- ( x =/= y -> 1o e. _V ) |
| 8 |
|
vex |
|- x e. _V |
| 9 |
8
|
a1i |
|- ( x =/= y -> x e. _V ) |
| 10 |
|
vex |
|- y e. _V |
| 11 |
10
|
a1i |
|- ( x =/= y -> y e. _V ) |
| 12 |
|
1n0 |
|- 1o =/= (/) |
| 13 |
12
|
necomi |
|- (/) =/= 1o |
| 14 |
13
|
a1i |
|- ( x =/= y -> (/) =/= 1o ) |
| 15 |
|
id |
|- ( x =/= y -> x =/= y ) |
| 16 |
5 7 9 11 14 15
|
en2prd |
|- ( x =/= y -> { (/) , 1o } ~~ { x , y } ) |
| 17 |
3 16
|
eqbrtrid |
|- ( x =/= y -> 2o ~~ { x , y } ) |
| 18 |
|
endom |
|- ( 2o ~~ { x , y } -> 2o ~<_ { x , y } ) |
| 19 |
17 18
|
syl |
|- ( x =/= y -> 2o ~<_ { x , y } ) |
| 20 |
|
domssr |
|- ( ( A e. _V /\ { x , y } C_ A /\ 2o ~<_ { x , y } ) -> 2o ~<_ A ) |
| 21 |
20
|
3expib |
|- ( A e. _V -> ( ( { x , y } C_ A /\ 2o ~<_ { x , y } ) -> 2o ~<_ A ) ) |
| 22 |
2 19 21
|
syl2ani |
|- ( A e. _V -> ( ( ( x e. A /\ y e. A ) /\ x =/= y ) -> 2o ~<_ A ) ) |
| 23 |
22
|
expd |
|- ( A e. _V -> ( ( x e. A /\ y e. A ) -> ( x =/= y -> 2o ~<_ A ) ) ) |
| 24 |
23
|
rexlimdvv |
|- ( A e. _V -> ( E. x e. A E. y e. A x =/= y -> 2o ~<_ A ) ) |
| 25 |
1 24
|
syl |
|- ( A e. V -> ( E. x e. A E. y e. A x =/= y -> 2o ~<_ A ) ) |
| 26 |
25
|
imp |
|- ( ( A e. V /\ E. x e. A E. y e. A x =/= y ) -> 2o ~<_ A ) |