| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpsr1.p |  |-  P = ( PwSer1 ` R ) | 
						
							| 2 |  | rhmpsr1.q |  |-  Q = ( PwSer1 ` S ) | 
						
							| 3 |  | rhmpsr1.b |  |-  B = ( Base ` P ) | 
						
							| 4 |  | rhmpsr1.f |  |-  F = ( p e. B |-> ( H o. p ) ) | 
						
							| 5 |  | rhmpsr1.h |  |-  ( ph -> H e. ( R RingHom S ) ) | 
						
							| 6 |  | eqid |  |-  ( 1o mPwSer R ) = ( 1o mPwSer R ) | 
						
							| 7 |  | eqid |  |-  ( 1o mPwSer S ) = ( 1o mPwSer S ) | 
						
							| 8 | 1 3 6 | psr1bas2 |  |-  B = ( Base ` ( 1o mPwSer R ) ) | 
						
							| 9 |  | 1oex |  |-  1o e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> 1o e. _V ) | 
						
							| 11 | 6 7 8 4 10 5 | rhmpsr |  |-  ( ph -> F e. ( ( 1o mPwSer R ) RingHom ( 1o mPwSer S ) ) ) | 
						
							| 12 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 13 | 1 12 6 | psr1bas2 |  |-  ( Base ` P ) = ( Base ` ( 1o mPwSer R ) ) | 
						
							| 14 | 13 | a1i |  |-  ( ph -> ( Base ` P ) = ( Base ` ( 1o mPwSer R ) ) ) | 
						
							| 15 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 16 | 2 15 7 | psr1bas2 |  |-  ( Base ` Q ) = ( Base ` ( 1o mPwSer S ) ) | 
						
							| 17 | 16 | a1i |  |-  ( ph -> ( Base ` Q ) = ( Base ` ( 1o mPwSer S ) ) ) | 
						
							| 18 |  | eqidd |  |-  ( ph -> ( Base ` P ) = ( Base ` P ) ) | 
						
							| 19 |  | eqidd |  |-  ( ph -> ( Base ` Q ) = ( Base ` Q ) ) | 
						
							| 20 |  | eqid |  |-  ( +g ` P ) = ( +g ` P ) | 
						
							| 21 | 1 6 20 | psr1plusg |  |-  ( +g ` P ) = ( +g ` ( 1o mPwSer R ) ) | 
						
							| 22 | 21 | eqcomi |  |-  ( +g ` ( 1o mPwSer R ) ) = ( +g ` P ) | 
						
							| 23 | 22 | a1i |  |-  ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( +g ` ( 1o mPwSer R ) ) = ( +g ` P ) ) | 
						
							| 24 | 23 | oveqd |  |-  ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( +g ` ( 1o mPwSer R ) ) y ) = ( x ( +g ` P ) y ) ) | 
						
							| 25 |  | eqid |  |-  ( +g ` Q ) = ( +g ` Q ) | 
						
							| 26 | 2 7 25 | psr1plusg |  |-  ( +g ` Q ) = ( +g ` ( 1o mPwSer S ) ) | 
						
							| 27 | 26 | eqcomi |  |-  ( +g ` ( 1o mPwSer S ) ) = ( +g ` Q ) | 
						
							| 28 | 27 | a1i |  |-  ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( +g ` ( 1o mPwSer S ) ) = ( +g ` Q ) ) | 
						
							| 29 | 28 | oveqd |  |-  ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( x ( +g ` ( 1o mPwSer S ) ) y ) = ( x ( +g ` Q ) y ) ) | 
						
							| 30 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 31 | 1 6 30 | psr1mulr |  |-  ( .r ` P ) = ( .r ` ( 1o mPwSer R ) ) | 
						
							| 32 | 31 | eqcomi |  |-  ( .r ` ( 1o mPwSer R ) ) = ( .r ` P ) | 
						
							| 33 | 32 | a1i |  |-  ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( .r ` ( 1o mPwSer R ) ) = ( .r ` P ) ) | 
						
							| 34 | 33 | oveqd |  |-  ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( .r ` ( 1o mPwSer R ) ) y ) = ( x ( .r ` P ) y ) ) | 
						
							| 35 |  | eqid |  |-  ( .r ` Q ) = ( .r ` Q ) | 
						
							| 36 | 2 7 35 | psr1mulr |  |-  ( .r ` Q ) = ( .r ` ( 1o mPwSer S ) ) | 
						
							| 37 | 36 | eqcomi |  |-  ( .r ` ( 1o mPwSer S ) ) = ( .r ` Q ) | 
						
							| 38 | 37 | a1i |  |-  ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( .r ` ( 1o mPwSer S ) ) = ( .r ` Q ) ) | 
						
							| 39 | 38 | oveqd |  |-  ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( x ( .r ` ( 1o mPwSer S ) ) y ) = ( x ( .r ` Q ) y ) ) | 
						
							| 40 | 14 17 18 19 24 29 34 39 | rhmpropd |  |-  ( ph -> ( ( 1o mPwSer R ) RingHom ( 1o mPwSer S ) ) = ( P RingHom Q ) ) | 
						
							| 41 | 11 40 | eleqtrd |  |-  ( ph -> F e. ( P RingHom Q ) ) |