| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmpsr1.p |
|- P = ( PwSer1 ` R ) |
| 2 |
|
rhmpsr1.q |
|- Q = ( PwSer1 ` S ) |
| 3 |
|
rhmpsr1.b |
|- B = ( Base ` P ) |
| 4 |
|
rhmpsr1.f |
|- F = ( p e. B |-> ( H o. p ) ) |
| 5 |
|
rhmpsr1.h |
|- ( ph -> H e. ( R RingHom S ) ) |
| 6 |
|
eqid |
|- ( 1o mPwSer R ) = ( 1o mPwSer R ) |
| 7 |
|
eqid |
|- ( 1o mPwSer S ) = ( 1o mPwSer S ) |
| 8 |
1 3 6
|
psr1bas2 |
|- B = ( Base ` ( 1o mPwSer R ) ) |
| 9 |
|
1oex |
|- 1o e. _V |
| 10 |
9
|
a1i |
|- ( ph -> 1o e. _V ) |
| 11 |
6 7 8 4 10 5
|
rhmpsr |
|- ( ph -> F e. ( ( 1o mPwSer R ) RingHom ( 1o mPwSer S ) ) ) |
| 12 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 13 |
1 12 6
|
psr1bas2 |
|- ( Base ` P ) = ( Base ` ( 1o mPwSer R ) ) |
| 14 |
13
|
a1i |
|- ( ph -> ( Base ` P ) = ( Base ` ( 1o mPwSer R ) ) ) |
| 15 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
| 16 |
2 15 7
|
psr1bas2 |
|- ( Base ` Q ) = ( Base ` ( 1o mPwSer S ) ) |
| 17 |
16
|
a1i |
|- ( ph -> ( Base ` Q ) = ( Base ` ( 1o mPwSer S ) ) ) |
| 18 |
|
eqidd |
|- ( ph -> ( Base ` P ) = ( Base ` P ) ) |
| 19 |
|
eqidd |
|- ( ph -> ( Base ` Q ) = ( Base ` Q ) ) |
| 20 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
| 21 |
1 6 20
|
psr1plusg |
|- ( +g ` P ) = ( +g ` ( 1o mPwSer R ) ) |
| 22 |
21
|
eqcomi |
|- ( +g ` ( 1o mPwSer R ) ) = ( +g ` P ) |
| 23 |
22
|
a1i |
|- ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( +g ` ( 1o mPwSer R ) ) = ( +g ` P ) ) |
| 24 |
23
|
oveqd |
|- ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( +g ` ( 1o mPwSer R ) ) y ) = ( x ( +g ` P ) y ) ) |
| 25 |
|
eqid |
|- ( +g ` Q ) = ( +g ` Q ) |
| 26 |
2 7 25
|
psr1plusg |
|- ( +g ` Q ) = ( +g ` ( 1o mPwSer S ) ) |
| 27 |
26
|
eqcomi |
|- ( +g ` ( 1o mPwSer S ) ) = ( +g ` Q ) |
| 28 |
27
|
a1i |
|- ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( +g ` ( 1o mPwSer S ) ) = ( +g ` Q ) ) |
| 29 |
28
|
oveqd |
|- ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( x ( +g ` ( 1o mPwSer S ) ) y ) = ( x ( +g ` Q ) y ) ) |
| 30 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
| 31 |
1 6 30
|
psr1mulr |
|- ( .r ` P ) = ( .r ` ( 1o mPwSer R ) ) |
| 32 |
31
|
eqcomi |
|- ( .r ` ( 1o mPwSer R ) ) = ( .r ` P ) |
| 33 |
32
|
a1i |
|- ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( .r ` ( 1o mPwSer R ) ) = ( .r ` P ) ) |
| 34 |
33
|
oveqd |
|- ( ( ph /\ ( x e. ( Base ` P ) /\ y e. ( Base ` P ) ) ) -> ( x ( .r ` ( 1o mPwSer R ) ) y ) = ( x ( .r ` P ) y ) ) |
| 35 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
| 36 |
2 7 35
|
psr1mulr |
|- ( .r ` Q ) = ( .r ` ( 1o mPwSer S ) ) |
| 37 |
36
|
eqcomi |
|- ( .r ` ( 1o mPwSer S ) ) = ( .r ` Q ) |
| 38 |
37
|
a1i |
|- ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( .r ` ( 1o mPwSer S ) ) = ( .r ` Q ) ) |
| 39 |
38
|
oveqd |
|- ( ( ph /\ ( x e. ( Base ` Q ) /\ y e. ( Base ` Q ) ) ) -> ( x ( .r ` ( 1o mPwSer S ) ) y ) = ( x ( .r ` Q ) y ) ) |
| 40 |
14 17 18 19 24 29 34 39
|
rhmpropd |
|- ( ph -> ( ( 1o mPwSer R ) RingHom ( 1o mPwSer S ) ) = ( P RingHom Q ) ) |
| 41 |
11 40
|
eleqtrd |
|- ( ph -> F e. ( P RingHom Q ) ) |