| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpsr1.p | ⊢ 𝑃  =  ( PwSer1 ‘ 𝑅 ) | 
						
							| 2 |  | rhmpsr1.q | ⊢ 𝑄  =  ( PwSer1 ‘ 𝑆 ) | 
						
							| 3 |  | rhmpsr1.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | rhmpsr1.f | ⊢ 𝐹  =  ( 𝑝  ∈  𝐵  ↦  ( 𝐻  ∘  𝑝 ) ) | 
						
							| 5 |  | rhmpsr1.h | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 1o  mPwSer  𝑅 )  =  ( 1o  mPwSer  𝑅 ) | 
						
							| 7 |  | eqid | ⊢ ( 1o  mPwSer  𝑆 )  =  ( 1o  mPwSer  𝑆 ) | 
						
							| 8 | 1 3 6 | psr1bas2 | ⊢ 𝐵  =  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 9 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 10 | 9 | a1i | ⊢ ( 𝜑  →  1o  ∈  V ) | 
						
							| 11 | 6 7 8 4 10 5 | rhmpsr | ⊢ ( 𝜑  →  𝐹  ∈  ( ( 1o  mPwSer  𝑅 )  RingHom  ( 1o  mPwSer  𝑆 ) ) ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 13 | 1 12 6 | psr1bas2 | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝑃 )  =  ( Base ‘ ( 1o  mPwSer  𝑅 ) ) ) | 
						
							| 15 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 16 | 2 15 7 | psr1bas2 | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ ( 1o  mPwSer  𝑆 ) ) | 
						
							| 17 | 16 | a1i | ⊢ ( 𝜑  →  ( Base ‘ 𝑄 )  =  ( Base ‘ ( 1o  mPwSer  𝑆 ) ) ) | 
						
							| 18 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 19 |  | eqidd | ⊢ ( 𝜑  →  ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 20 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 21 | 1 6 20 | psr1plusg | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 22 | 21 | eqcomi | ⊢ ( +g ‘ ( 1o  mPwSer  𝑅 ) )  =  ( +g ‘ 𝑃 ) | 
						
							| 23 | 22 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ∧  𝑦  ∈  ( Base ‘ 𝑃 ) ) )  →  ( +g ‘ ( 1o  mPwSer  𝑅 ) )  =  ( +g ‘ 𝑃 ) ) | 
						
							| 24 | 23 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ∧  𝑦  ∈  ( Base ‘ 𝑃 ) ) )  →  ( 𝑥 ( +g ‘ ( 1o  mPwSer  𝑅 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) | 
						
							| 25 |  | eqid | ⊢ ( +g ‘ 𝑄 )  =  ( +g ‘ 𝑄 ) | 
						
							| 26 | 2 7 25 | psr1plusg | ⊢ ( +g ‘ 𝑄 )  =  ( +g ‘ ( 1o  mPwSer  𝑆 ) ) | 
						
							| 27 | 26 | eqcomi | ⊢ ( +g ‘ ( 1o  mPwSer  𝑆 ) )  =  ( +g ‘ 𝑄 ) | 
						
							| 28 | 27 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑄 )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) ) )  →  ( +g ‘ ( 1o  mPwSer  𝑆 ) )  =  ( +g ‘ 𝑄 ) ) | 
						
							| 29 | 28 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑄 )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) ) )  →  ( 𝑥 ( +g ‘ ( 1o  mPwSer  𝑆 ) ) 𝑦 )  =  ( 𝑥 ( +g ‘ 𝑄 ) 𝑦 ) ) | 
						
							| 30 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 31 | 1 6 30 | psr1mulr | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ ( 1o  mPwSer  𝑅 ) ) | 
						
							| 32 | 31 | eqcomi | ⊢ ( .r ‘ ( 1o  mPwSer  𝑅 ) )  =  ( .r ‘ 𝑃 ) | 
						
							| 33 | 32 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ∧  𝑦  ∈  ( Base ‘ 𝑃 ) ) )  →  ( .r ‘ ( 1o  mPwSer  𝑅 ) )  =  ( .r ‘ 𝑃 ) ) | 
						
							| 34 | 33 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑃 )  ∧  𝑦  ∈  ( Base ‘ 𝑃 ) ) )  →  ( 𝑥 ( .r ‘ ( 1o  mPwSer  𝑅 ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) | 
						
							| 35 |  | eqid | ⊢ ( .r ‘ 𝑄 )  =  ( .r ‘ 𝑄 ) | 
						
							| 36 | 2 7 35 | psr1mulr | ⊢ ( .r ‘ 𝑄 )  =  ( .r ‘ ( 1o  mPwSer  𝑆 ) ) | 
						
							| 37 | 36 | eqcomi | ⊢ ( .r ‘ ( 1o  mPwSer  𝑆 ) )  =  ( .r ‘ 𝑄 ) | 
						
							| 38 | 37 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑄 )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) ) )  →  ( .r ‘ ( 1o  mPwSer  𝑆 ) )  =  ( .r ‘ 𝑄 ) ) | 
						
							| 39 | 38 | oveqd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( Base ‘ 𝑄 )  ∧  𝑦  ∈  ( Base ‘ 𝑄 ) ) )  →  ( 𝑥 ( .r ‘ ( 1o  mPwSer  𝑆 ) ) 𝑦 )  =  ( 𝑥 ( .r ‘ 𝑄 ) 𝑦 ) ) | 
						
							| 40 | 14 17 18 19 24 29 34 39 | rhmpropd | ⊢ ( 𝜑  →  ( ( 1o  mPwSer  𝑅 )  RingHom  ( 1o  mPwSer  𝑆 ) )  =  ( 𝑃  RingHom  𝑄 ) ) | 
						
							| 41 | 11 40 | eleqtrd | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑃  RingHom  𝑄 ) ) |