| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpsr.p | ⊢ 𝑃  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | rhmpsr.q | ⊢ 𝑄  =  ( 𝐼  mPwSer  𝑆 ) | 
						
							| 3 |  | rhmpsr.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | rhmpsr.f | ⊢ 𝐹  =  ( 𝑝  ∈  𝐵  ↦  ( 𝐻  ∘  𝑝 ) ) | 
						
							| 5 |  | rhmpsr.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 6 |  | rhmpsr.h | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 7 |  | eqid | ⊢ ( 1r ‘ 𝑃 )  =  ( 1r ‘ 𝑃 ) | 
						
							| 8 |  | eqid | ⊢ ( 1r ‘ 𝑄 )  =  ( 1r ‘ 𝑄 ) | 
						
							| 9 |  | eqid | ⊢ ( .r ‘ 𝑃 )  =  ( .r ‘ 𝑃 ) | 
						
							| 10 |  | eqid | ⊢ ( .r ‘ 𝑄 )  =  ( .r ‘ 𝑄 ) | 
						
							| 11 |  | rhmrcl1 | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑅  ∈  Ring ) | 
						
							| 12 | 6 11 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 13 | 1 5 12 | psrring | ⊢ ( 𝜑  →  𝑃  ∈  Ring ) | 
						
							| 14 |  | rhmrcl2 | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑆  ∈  Ring ) | 
						
							| 15 | 6 14 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 16 | 2 5 15 | psrring | ⊢ ( 𝜑  →  𝑄  ∈  Ring ) | 
						
							| 17 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 18 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 19 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 20 | 1 5 12 17 18 19 7 | psr1 | ⊢ ( 𝜑  →  ( 1r ‘ 𝑃 )  =  ( 𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 21 | 20 | coeq2d | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 1r ‘ 𝑃 ) )  =  ( 𝐻  ∘  ( 𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 24 | 22 23 | rhmf | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 25 | 6 24 | syl | ⊢ ( 𝜑  →  𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 26 | 22 19 | ringidcl | ⊢ ( 𝑅  ∈  Ring  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 27 | 12 26 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 28 | 22 18 | ring0cl | ⊢ ( 𝑅  ∈  Ring  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 29 | 12 28 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 30 | 27 29 | ifcld | ⊢ ( 𝜑  →  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝜑  ∧  𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 32 | 25 31 | cofmpt | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( 𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝐻 ‘ if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) ) ) | 
						
							| 33 |  | fvif | ⊢ ( 𝐻 ‘ if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) ,  ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) ) | 
						
							| 34 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 35 | 19 34 | rhm1 | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  ( 𝐻 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 36 | 6 35 | syl | ⊢ ( 𝜑  →  ( 𝐻 ‘ ( 1r ‘ 𝑅 ) )  =  ( 1r ‘ 𝑆 ) ) | 
						
							| 37 |  | rhmghm | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐻  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 38 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 39 | 18 38 | ghmid | ⊢ ( 𝐻  ∈  ( 𝑅  GrpHom  𝑆 )  →  ( 𝐻 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 40 | 6 37 39 | 3syl | ⊢ ( 𝜑  →  ( 𝐻 ‘ ( 0g ‘ 𝑅 ) )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 41 | 36 40 | ifeq12d | ⊢ ( 𝜑  →  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) ,  ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) )  =  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑆 ) ,  ( 0g ‘ 𝑆 ) ) ) | 
						
							| 42 | 33 41 | eqtrid | ⊢ ( 𝜑  →  ( 𝐻 ‘ if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) )  =  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑆 ) ,  ( 0g ‘ 𝑆 ) ) ) | 
						
							| 43 | 42 | mpteq2dv | ⊢ ( 𝜑  →  ( 𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝐻 ‘ if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑅 ) ,  ( 0g ‘ 𝑅 ) ) ) )  =  ( 𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑆 ) ,  ( 0g ‘ 𝑆 ) ) ) ) | 
						
							| 44 | 21 32 43 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 1r ‘ 𝑃 ) )  =  ( 𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑆 ) ,  ( 0g ‘ 𝑆 ) ) ) ) | 
						
							| 45 |  | coeq2 | ⊢ ( 𝑝  =  ( 1r ‘ 𝑃 )  →  ( 𝐻  ∘  𝑝 )  =  ( 𝐻  ∘  ( 1r ‘ 𝑃 ) ) ) | 
						
							| 46 | 3 7 | ringidcl | ⊢ ( 𝑃  ∈  Ring  →  ( 1r ‘ 𝑃 )  ∈  𝐵 ) | 
						
							| 47 | 13 46 | syl | ⊢ ( 𝜑  →  ( 1r ‘ 𝑃 )  ∈  𝐵 ) | 
						
							| 48 | 6 47 | coexd | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 1r ‘ 𝑃 ) )  ∈  V ) | 
						
							| 49 | 4 45 47 48 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 1r ‘ 𝑃 ) )  =  ( 𝐻  ∘  ( 1r ‘ 𝑃 ) ) ) | 
						
							| 50 | 2 5 15 17 38 34 8 | psr1 | ⊢ ( 𝜑  →  ( 1r ‘ 𝑄 )  =  ( 𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  if ( 𝑑  =  ( 𝐼  ×  { 0 } ) ,  ( 1r ‘ 𝑆 ) ,  ( 0g ‘ 𝑆 ) ) ) ) | 
						
							| 51 | 44 49 50 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ ( 1r ‘ 𝑃 ) )  =  ( 1r ‘ 𝑄 ) ) | 
						
							| 52 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 53 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐻  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 54 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑥  ∈  𝐵 ) | 
						
							| 55 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑦  ∈  𝐵 ) | 
						
							| 56 | 1 2 3 52 9 10 53 54 55 | rhmcomulpsr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐻  ∘  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( ( 𝐻  ∘  𝑥 ) ( .r ‘ 𝑄 ) ( 𝐻  ∘  𝑦 ) ) ) | 
						
							| 57 |  | coeq2 | ⊢ ( 𝑝  =  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  →  ( 𝐻  ∘  𝑝 )  =  ( 𝐻  ∘  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) | 
						
							| 58 | 13 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑃  ∈  Ring ) | 
						
							| 59 | 3 9 58 54 55 | ringcld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 60 | 53 59 | coexd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐻  ∘  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  ∈  V ) | 
						
							| 61 | 4 57 59 60 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( 𝐻  ∘  ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) | 
						
							| 62 |  | coeq2 | ⊢ ( 𝑝  =  𝑥  →  ( 𝐻  ∘  𝑝 )  =  ( 𝐻  ∘  𝑥 ) ) | 
						
							| 63 | 53 54 | coexd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐻  ∘  𝑥 )  ∈  V ) | 
						
							| 64 | 4 62 54 63 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹 ‘ 𝑥 )  =  ( 𝐻  ∘  𝑥 ) ) | 
						
							| 65 |  | coeq2 | ⊢ ( 𝑝  =  𝑦  →  ( 𝐻  ∘  𝑝 )  =  ( 𝐻  ∘  𝑦 ) ) | 
						
							| 66 | 53 55 | coexd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐻  ∘  𝑦 )  ∈  V ) | 
						
							| 67 | 4 65 55 66 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐻  ∘  𝑦 ) ) | 
						
							| 68 | 64 67 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐻  ∘  𝑥 ) ( .r ‘ 𝑄 ) ( 𝐻  ∘  𝑦 ) ) ) | 
						
							| 69 | 56 61 68 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 70 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 71 |  | eqid | ⊢ ( +g ‘ 𝑄 )  =  ( +g ‘ 𝑄 ) | 
						
							| 72 |  | ghmmhm | ⊢ ( 𝐻  ∈  ( 𝑅  GrpHom  𝑆 )  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 73 | 6 37 72 | 3syl | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 75 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  𝑝  ∈  𝐵 ) | 
						
							| 76 | 1 2 3 52 74 75 | mhmcopsr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  𝐵 )  →  ( 𝐻  ∘  𝑝 )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 77 | 76 4 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ) | 
						
							| 78 | 53 37 72 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 79 | 1 2 3 52 70 71 78 54 55 | mhmcoaddpsr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐻  ∘  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) )  =  ( ( 𝐻  ∘  𝑥 ) ( +g ‘ 𝑄 ) ( 𝐻  ∘  𝑦 ) ) ) | 
						
							| 80 |  | coeq2 | ⊢ ( 𝑝  =  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  →  ( 𝐻  ∘  𝑝 )  =  ( 𝐻  ∘  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) | 
						
							| 81 | 58 | ringgrpd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  𝑃  ∈  Grp ) | 
						
							| 82 | 3 70 81 54 55 | grpcld | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 )  ∈  𝐵 ) | 
						
							| 83 | 53 82 | coexd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐻  ∘  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) )  ∈  V ) | 
						
							| 84 | 4 80 82 83 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) )  =  ( 𝐻  ∘  ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) | 
						
							| 85 | 64 67 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) )  =  ( ( 𝐻  ∘  𝑥 ) ( +g ‘ 𝑄 ) ( 𝐻  ∘  𝑦 ) ) ) | 
						
							| 86 | 79 84 85 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) )  =  ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 87 | 3 7 8 9 10 13 16 51 69 52 70 71 77 86 | isrhmd | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑃  RingHom  𝑄 ) ) |