| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhmcopsr.p |
⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
mhmcopsr.q |
⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) |
| 3 |
|
mhmcopsr.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
mhmcopsr.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
| 5 |
|
mhmcopsr.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 6 |
|
mhmcopsr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 7 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑆 ) ∈ V ) |
| 8 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 9 |
8
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 13 |
11 12
|
mhmf |
⊢ ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 15 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 16 |
1 11 15 3 6
|
psrelbas |
⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 17 |
14 16
|
fcod |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑆 ) ) |
| 18 |
7 10 17
|
elmapdd |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 19 |
|
reldmpsr |
⊢ Rel dom mPwSer |
| 20 |
19 1 3
|
elbasov |
⊢ ( 𝐹 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 21 |
6 20
|
syl |
⊢ ( 𝜑 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 22 |
21
|
simpld |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 23 |
2 12 15 4 22
|
psrbas |
⊢ ( 𝜑 → 𝐶 = ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 24 |
18 23
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |