| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mhmcoaddpsr.p |
⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
mhmcoaddpsr.q |
⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) |
| 3 |
|
mhmcoaddpsr.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
mhmcoaddpsr.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
| 5 |
|
mhmcoaddpsr.1 |
⊢ + = ( +g ‘ 𝑃 ) |
| 6 |
|
mhmcoaddpsr.2 |
⊢ ✚ = ( +g ‘ 𝑄 ) |
| 7 |
|
mhmcoaddpsr.h |
⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 8 |
|
mhmcoaddpsr.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) |
| 9 |
|
mhmcoaddpsr.g |
⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) |
| 10 |
|
fvexd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) |
| 11 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 12 |
11
|
rabex |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 15 |
|
eqid |
⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 16 |
1 14 15 3 8
|
psrelbas |
⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 17 |
10 13 16
|
elmapdd |
⊢ ( 𝜑 → 𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 18 |
1 14 15 3 9
|
psrelbas |
⊢ ( 𝜑 → 𝐺 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 19 |
10 13 18
|
elmapdd |
⊢ ( 𝜑 → 𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 20 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
| 21 |
|
eqid |
⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) |
| 22 |
14 20 21
|
mhmvlin |
⊢ ( ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) → ( 𝐻 ∘ ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f ( +g ‘ 𝑆 ) ( 𝐻 ∘ 𝐺 ) ) ) |
| 23 |
7 17 19 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f ( +g ‘ 𝑆 ) ( 𝐻 ∘ 𝐺 ) ) ) |
| 24 |
1 3 20 5 8 9
|
psradd |
⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) = ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) |
| 25 |
24
|
coeq2d |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( 𝐻 ∘ ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) ) |
| 26 |
1 2 3 4 7 8
|
mhmcopsr |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |
| 27 |
1 2 3 4 7 9
|
mhmcopsr |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝐺 ) ∈ 𝐶 ) |
| 28 |
2 4 21 6 26 27
|
psradd |
⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ✚ ( 𝐻 ∘ 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f ( +g ‘ 𝑆 ) ( 𝐻 ∘ 𝐺 ) ) ) |
| 29 |
23 25 28
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ✚ ( 𝐻 ∘ 𝐺 ) ) ) |