| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmcomulpsr.p | ⊢ 𝑃  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | rhmcomulpsr.q | ⊢ 𝑄  =  ( 𝐼  mPwSer  𝑆 ) | 
						
							| 3 |  | rhmcomulpsr.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 4 |  | rhmcomulpsr.c | ⊢ 𝐶  =  ( Base ‘ 𝑄 ) | 
						
							| 5 |  | rhmcomulpsr.1 | ⊢  ·   =  ( .r ‘ 𝑃 ) | 
						
							| 6 |  | rhmcomulpsr.2 | ⊢  ∙   =  ( .r ‘ 𝑄 ) | 
						
							| 7 |  | rhmcomulpsr.h | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 8 |  | rhmcomulpsr.f | ⊢ ( 𝜑  →  𝐹  ∈  𝐵 ) | 
						
							| 9 |  | rhmcomulpsr.g | ⊢ ( 𝜑  →  𝐺  ∈  𝐵 ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 12 | 10 11 | rhmf | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 13 | 7 12 | syl | ⊢ ( 𝜑  →  𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 14 |  | eqid | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 15 |  | rhmrcl1 | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑅  ∈  Ring ) | 
						
							| 16 | 7 15 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 17 | 1 10 14 3 8 | psrelbas | ⊢ ( 𝜑  →  𝐹 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 1 10 14 3 9 | psrelbas | ⊢ ( 𝜑  →  𝐺 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 19 | 14 16 17 18 | rhmpsrlem2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑅  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 20 | 13 19 | cofmpt | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝑅  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) )  =  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝐻 ‘ ( 𝑅  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) ) ) | 
						
							| 21 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 22 | 16 | ringcmnd | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑅  ∈  CMnd ) | 
						
							| 24 |  | rhmrcl2 | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝑆  ∈  Ring ) | 
						
							| 25 | 7 24 | syl | ⊢ ( 𝜑  →  𝑆  ∈  Ring ) | 
						
							| 26 | 25 | ringgrpd | ⊢ ( 𝜑  →  𝑆  ∈  Grp ) | 
						
							| 27 | 26 | grpmndd | ⊢ ( 𝜑  →  𝑆  ∈  Mnd ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝑆  ∈  Mnd ) | 
						
							| 29 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 30 | 29 | rabex | ⊢ { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∈  V | 
						
							| 31 | 30 | rabex | ⊢ { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ∈  V | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ∈  V ) | 
						
							| 33 |  | rhmghm | ⊢ ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐻  ∈  ( 𝑅  GrpHom  𝑆 ) ) | 
						
							| 34 |  | ghmmhm | ⊢ ( 𝐻  ∈  ( 𝑅  GrpHom  𝑆 )  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 35 | 7 33 34 | 3syl | ⊢ ( 𝜑  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 36 | 35 | adantr | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  𝐻  ∈  ( 𝑅  MndHom  𝑆 ) ) | 
						
							| 37 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 38 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  𝑅  ∈  Ring ) | 
						
							| 39 |  | elrabi | ⊢ ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  →  𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 40 | 17 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝐹 ‘ 𝑑 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 41 | 39 40 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( 𝐹 ‘ 𝑑 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 42 | 41 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( 𝐹 ‘ 𝑑 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 43 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  𝐺 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 44 |  | eqid | ⊢ { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  =  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } | 
						
							| 45 | 14 44 | psrbagconcl | ⊢ ( ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑑 )  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } ) | 
						
							| 46 | 45 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑑 )  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } ) | 
						
							| 47 |  | elrabi | ⊢ ( ( 𝑘  ∘f   −  𝑑 )  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  →  ( 𝑘  ∘f   −  𝑑 )  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 48 | 46 47 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( 𝑘  ∘f   −  𝑑 )  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 49 | 43 48 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 50 | 10 37 38 42 49 | ringcld | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 51 | 14 16 17 18 | rhmpsrlem1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) )  finSupp  ( 0g ‘ 𝑅 ) ) | 
						
							| 52 | 10 21 23 28 32 36 50 51 | gsummptmhm | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑆  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) )  =  ( 𝐻 ‘ ( 𝑅  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) ) | 
						
							| 53 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  𝐻  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 54 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 55 | 10 37 54 | rhmmul | ⊢ ( ( 𝐻  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ( 𝐹 ‘ 𝑑 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) )  =  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑑 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) | 
						
							| 56 | 53 42 49 55 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) )  =  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑑 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) | 
						
							| 57 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  𝐹 : { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 58 | 39 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  𝑑  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } ) | 
						
							| 59 | 57 58 | fvco3d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( ( 𝐻  ∘  𝐹 ) ‘ 𝑑 )  =  ( 𝐻 ‘ ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 60 | 43 48 | fvco3d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( ( 𝐻  ∘  𝐺 ) ‘ ( 𝑘  ∘f   −  𝑑 ) )  =  ( 𝐻 ‘ ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) | 
						
							| 61 | 59 60 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( ( ( 𝐻  ∘  𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻  ∘  𝐺 ) ‘ ( 𝑘  ∘f   −  𝑑 ) ) )  =  ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑑 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) | 
						
							| 62 | 56 61 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  ∧  𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 } )  →  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) )  =  ( ( ( 𝐻  ∘  𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻  ∘  𝐺 ) ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) | 
						
							| 63 | 62 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) )  =  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( ( 𝐻  ∘  𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻  ∘  𝐺 ) ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝑆  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( ( 𝐻  ∘  𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻  ∘  𝐺 ) ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) | 
						
							| 65 | 52 64 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } )  →  ( 𝐻 ‘ ( 𝑅  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) )  =  ( 𝑆  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( ( 𝐻  ∘  𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻  ∘  𝐺 ) ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) | 
						
							| 66 | 65 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝐻 ‘ ( 𝑅  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) )  =  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝑆  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( ( 𝐻  ∘  𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻  ∘  𝐺 ) ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) ) | 
						
							| 67 | 20 66 | eqtrd | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝑅  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) )  =  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝑆  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( ( 𝐻  ∘  𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻  ∘  𝐺 ) ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) ) | 
						
							| 68 | 1 3 37 5 14 8 9 | psrmulfval | ⊢ ( 𝜑  →  ( 𝐹  ·  𝐺 )  =  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝑅  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) ) | 
						
							| 69 | 68 | coeq2d | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐹  ·  𝐺 ) )  =  ( 𝐻  ∘  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝑅  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) ) ) | 
						
							| 70 | 1 2 3 4 35 8 | mhmcopsr | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐹 )  ∈  𝐶 ) | 
						
							| 71 | 1 2 3 4 35 9 | mhmcopsr | ⊢ ( 𝜑  →  ( 𝐻  ∘  𝐺 )  ∈  𝐶 ) | 
						
							| 72 | 2 4 54 6 14 70 71 | psrmulfval | ⊢ ( 𝜑  →  ( ( 𝐻  ∘  𝐹 )  ∙  ( 𝐻  ∘  𝐺 ) )  =  ( 𝑘  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ↦  ( 𝑆  Σg  ( 𝑑  ∈  { 𝑒  ∈  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin }  ∣  𝑒  ∘r   ≤  𝑘 }  ↦  ( ( ( 𝐻  ∘  𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻  ∘  𝐺 ) ‘ ( 𝑘  ∘f   −  𝑑 ) ) ) ) ) ) ) | 
						
							| 73 | 67 69 72 | 3eqtr4d | ⊢ ( 𝜑  →  ( 𝐻  ∘  ( 𝐹  ·  𝐺 ) )  =  ( ( 𝐻  ∘  𝐹 )  ∙  ( 𝐻  ∘  𝐺 ) ) ) |