Metamath Proof Explorer


Theorem rightpos

Description: A surreal is non-negative iff all its right options are positive. (Contributed by Scott Fenton, 1-Jan-2026)

Ref Expression
Hypotheses rightpos.1
|- ( ph -> A <
rightpos.2
|- ( ph -> X = ( A |s B ) )
Assertion rightpos
|- ( ph -> ( 0s <_s X <-> A. xR e. B 0s 

Proof

Step Hyp Ref Expression
1 rightpos.1
 |-  ( ph -> A <
2 rightpos.2
 |-  ( ph -> X = ( A |s B ) )
3 0elpw
 |-  (/) e. ~P No
4 nulssgt
 |-  ( (/) e. ~P No -> (/) <
5 3 4 mp1i
 |-  ( ph -> (/) <
6 df-0s
 |-  0s = ( (/) |s (/) )
7 6 a1i
 |-  ( ph -> 0s = ( (/) |s (/) ) )
8 5 1 7 2 slerecd
 |-  ( ph -> ( 0s <_s X <-> ( A. xR e. B 0s 
9 ral0
 |-  A. xL e. (/) xL 
10 9 biantru
 |-  ( A. xR e. B 0s  ( A. xR e. B 0s 
11 8 10 bitr4di
 |-  ( ph -> ( 0s <_s X <-> A. xR e. B 0s