Description: A surreal is non-negative iff all its right options are positive. (Contributed by Scott Fenton, 1-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rightpos.1 | ⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) | |
| rightpos.2 | ⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) ) | ||
| Assertion | rightpos | ⊢ ( 𝜑 → ( 0s ≤s 𝑋 ↔ ∀ 𝑥𝑅 ∈ 𝐵 0s <s 𝑥𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rightpos.1 | ⊢ ( 𝜑 → 𝐴 <<s 𝐵 ) | |
| 2 | rightpos.2 | ⊢ ( 𝜑 → 𝑋 = ( 𝐴 |s 𝐵 ) ) | |
| 3 | 0elpw | ⊢ ∅ ∈ 𝒫 No | |
| 4 | nulssgt | ⊢ ( ∅ ∈ 𝒫 No → ∅ <<s ∅ ) | |
| 5 | 3 4 | mp1i | ⊢ ( 𝜑 → ∅ <<s ∅ ) |
| 6 | df-0s | ⊢ 0s = ( ∅ |s ∅ ) | |
| 7 | 6 | a1i | ⊢ ( 𝜑 → 0s = ( ∅ |s ∅ ) ) |
| 8 | 5 1 7 2 | slerecd | ⊢ ( 𝜑 → ( 0s ≤s 𝑋 ↔ ( ∀ 𝑥𝑅 ∈ 𝐵 0s <s 𝑥𝑅 ∧ ∀ 𝑥𝐿 ∈ ∅ 𝑥𝐿 <s 𝑋 ) ) ) |
| 9 | ral0 | ⊢ ∀ 𝑥𝐿 ∈ ∅ 𝑥𝐿 <s 𝑋 | |
| 10 | 9 | biantru | ⊢ ( ∀ 𝑥𝑅 ∈ 𝐵 0s <s 𝑥𝑅 ↔ ( ∀ 𝑥𝑅 ∈ 𝐵 0s <s 𝑥𝑅 ∧ ∀ 𝑥𝐿 ∈ ∅ 𝑥𝐿 <s 𝑋 ) ) |
| 11 | 8 10 | bitr4di | ⊢ ( 𝜑 → ( 0s ≤s 𝑋 ↔ ∀ 𝑥𝑅 ∈ 𝐵 0s <s 𝑥𝑅 ) ) |