Metamath Proof Explorer


Theorem rightpos

Description: A surreal is non-negative iff all its right options are positive. (Contributed by Scott Fenton, 1-Jan-2026)

Ref Expression
Hypotheses rightpos.1 ( 𝜑𝐴 <<s 𝐵 )
rightpos.2 ( 𝜑𝑋 = ( 𝐴 |s 𝐵 ) )
Assertion rightpos ( 𝜑 → ( 0s ≤s 𝑋 ↔ ∀ 𝑥𝑅𝐵 0s <s 𝑥𝑅 ) )

Proof

Step Hyp Ref Expression
1 rightpos.1 ( 𝜑𝐴 <<s 𝐵 )
2 rightpos.2 ( 𝜑𝑋 = ( 𝐴 |s 𝐵 ) )
3 0elpw ∅ ∈ 𝒫 No
4 nulssgt ( ∅ ∈ 𝒫 No → ∅ <<s ∅ )
5 3 4 mp1i ( 𝜑 → ∅ <<s ∅ )
6 df-0s 0s = ( ∅ |s ∅ )
7 6 a1i ( 𝜑 → 0s = ( ∅ |s ∅ ) )
8 5 1 7 2 slerecd ( 𝜑 → ( 0s ≤s 𝑋 ↔ ( ∀ 𝑥𝑅𝐵 0s <s 𝑥𝑅 ∧ ∀ 𝑥𝐿 ∈ ∅ 𝑥𝐿 <s 𝑋 ) ) )
9 ral0 𝑥𝐿 ∈ ∅ 𝑥𝐿 <s 𝑋
10 9 biantru ( ∀ 𝑥𝑅𝐵 0s <s 𝑥𝑅 ↔ ( ∀ 𝑥𝑅𝐵 0s <s 𝑥𝑅 ∧ ∀ 𝑥𝐿 ∈ ∅ 𝑥𝐿 <s 𝑋 ) )
11 8 10 bitr4di ( 𝜑 → ( 0s ≤s 𝑋 ↔ ∀ 𝑥𝑅𝐵 0s <s 𝑥𝑅 ) )