Metamath Proof Explorer


Theorem ringadd2

Description: A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 22-Dec-2013) (Revised by AV, 24-Aug-2021)

Ref Expression
Hypotheses ringadd2.b
|- B = ( Base ` R )
ringadd2.p
|- .+ = ( +g ` R )
ringadd2.t
|- .x. = ( .r ` R )
Assertion ringadd2
|- ( ( R e. Ring /\ X e. B ) -> E. x e. B ( X .+ X ) = ( ( x .+ x ) .x. X ) )

Proof

Step Hyp Ref Expression
1 ringadd2.b
 |-  B = ( Base ` R )
2 ringadd2.p
 |-  .+ = ( +g ` R )
3 ringadd2.t
 |-  .x. = ( .r ` R )
4 1 3 ringid
 |-  ( ( R e. Ring /\ X e. B ) -> E. x e. B ( ( x .x. X ) = X /\ ( X .x. x ) = X ) )
5 oveq12
 |-  ( ( ( x .x. X ) = X /\ ( x .x. X ) = X ) -> ( ( x .x. X ) .+ ( x .x. X ) ) = ( X .+ X ) )
6 5 anidms
 |-  ( ( x .x. X ) = X -> ( ( x .x. X ) .+ ( x .x. X ) ) = ( X .+ X ) )
7 6 eqcomd
 |-  ( ( x .x. X ) = X -> ( X .+ X ) = ( ( x .x. X ) .+ ( x .x. X ) ) )
8 simpll
 |-  ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> R e. Ring )
9 simpr
 |-  ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> x e. B )
10 simplr
 |-  ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> X e. B )
11 1 2 3 ringdir
 |-  ( ( R e. Ring /\ ( x e. B /\ x e. B /\ X e. B ) ) -> ( ( x .+ x ) .x. X ) = ( ( x .x. X ) .+ ( x .x. X ) ) )
12 8 9 9 10 11 syl13anc
 |-  ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( ( x .+ x ) .x. X ) = ( ( x .x. X ) .+ ( x .x. X ) ) )
13 12 eqeq2d
 |-  ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( ( X .+ X ) = ( ( x .+ x ) .x. X ) <-> ( X .+ X ) = ( ( x .x. X ) .+ ( x .x. X ) ) ) )
14 7 13 syl5ibr
 |-  ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( ( x .x. X ) = X -> ( X .+ X ) = ( ( x .+ x ) .x. X ) ) )
15 14 adantrd
 |-  ( ( ( R e. Ring /\ X e. B ) /\ x e. B ) -> ( ( ( x .x. X ) = X /\ ( X .x. x ) = X ) -> ( X .+ X ) = ( ( x .+ x ) .x. X ) ) )
16 15 reximdva
 |-  ( ( R e. Ring /\ X e. B ) -> ( E. x e. B ( ( x .x. X ) = X /\ ( X .x. x ) = X ) -> E. x e. B ( X .+ X ) = ( ( x .+ x ) .x. X ) ) )
17 4 16 mpd
 |-  ( ( R e. Ring /\ X e. B ) -> E. x e. B ( X .+ X ) = ( ( x .+ x ) .x. X ) )