| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rinvmod.b |
|- B = ( Base ` G ) |
| 2 |
|
rinvmod.0 |
|- .0. = ( 0g ` G ) |
| 3 |
|
rinvmod.p |
|- .+ = ( +g ` G ) |
| 4 |
|
rinvmod.m |
|- ( ph -> G e. CMnd ) |
| 5 |
|
rinvmod.a |
|- ( ph -> A e. B ) |
| 6 |
4
|
adantr |
|- ( ( ph /\ w e. B ) -> G e. CMnd ) |
| 7 |
|
simpr |
|- ( ( ph /\ w e. B ) -> w e. B ) |
| 8 |
5
|
adantr |
|- ( ( ph /\ w e. B ) -> A e. B ) |
| 9 |
1 3
|
cmncom |
|- ( ( G e. CMnd /\ w e. B /\ A e. B ) -> ( w .+ A ) = ( A .+ w ) ) |
| 10 |
6 7 8 9
|
syl3anc |
|- ( ( ph /\ w e. B ) -> ( w .+ A ) = ( A .+ w ) ) |
| 11 |
10
|
adantr |
|- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( w .+ A ) = ( A .+ w ) ) |
| 12 |
|
simpr |
|- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( A .+ w ) = .0. ) |
| 13 |
11 12
|
eqtrd |
|- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( w .+ A ) = .0. ) |
| 14 |
13 12
|
jca |
|- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) |
| 15 |
14
|
ex |
|- ( ( ph /\ w e. B ) -> ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) ) |
| 16 |
15
|
ralrimiva |
|- ( ph -> A. w e. B ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) ) |
| 17 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
| 18 |
4 17
|
syl |
|- ( ph -> G e. Mnd ) |
| 19 |
1 2 3 18 5
|
mndinvmod |
|- ( ph -> E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) |
| 20 |
|
rmoim |
|- ( A. w e. B ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) -> ( E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) -> E* w e. B ( A .+ w ) = .0. ) ) |
| 21 |
16 19 20
|
sylc |
|- ( ph -> E* w e. B ( A .+ w ) = .0. ) |