Step |
Hyp |
Ref |
Expression |
1 |
|
rinvmod.b |
|- B = ( Base ` G ) |
2 |
|
rinvmod.0 |
|- .0. = ( 0g ` G ) |
3 |
|
rinvmod.p |
|- .+ = ( +g ` G ) |
4 |
|
rinvmod.m |
|- ( ph -> G e. CMnd ) |
5 |
|
rinvmod.a |
|- ( ph -> A e. B ) |
6 |
4
|
adantr |
|- ( ( ph /\ w e. B ) -> G e. CMnd ) |
7 |
|
simpr |
|- ( ( ph /\ w e. B ) -> w e. B ) |
8 |
5
|
adantr |
|- ( ( ph /\ w e. B ) -> A e. B ) |
9 |
1 3
|
cmncom |
|- ( ( G e. CMnd /\ w e. B /\ A e. B ) -> ( w .+ A ) = ( A .+ w ) ) |
10 |
6 7 8 9
|
syl3anc |
|- ( ( ph /\ w e. B ) -> ( w .+ A ) = ( A .+ w ) ) |
11 |
10
|
adantr |
|- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( w .+ A ) = ( A .+ w ) ) |
12 |
|
simpr |
|- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( A .+ w ) = .0. ) |
13 |
11 12
|
eqtrd |
|- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( w .+ A ) = .0. ) |
14 |
13 12
|
jca |
|- ( ( ( ph /\ w e. B ) /\ ( A .+ w ) = .0. ) -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) |
15 |
14
|
ex |
|- ( ( ph /\ w e. B ) -> ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) ) |
16 |
15
|
ralrimiva |
|- ( ph -> A. w e. B ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) ) |
17 |
|
cmnmnd |
|- ( G e. CMnd -> G e. Mnd ) |
18 |
4 17
|
syl |
|- ( ph -> G e. Mnd ) |
19 |
1 2 3 18 5
|
mndinvmod |
|- ( ph -> E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) |
20 |
|
rmoim |
|- ( A. w e. B ( ( A .+ w ) = .0. -> ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) ) -> ( E* w e. B ( ( w .+ A ) = .0. /\ ( A .+ w ) = .0. ) -> E* w e. B ( A .+ w ) = .0. ) ) |
21 |
16 19 20
|
sylc |
|- ( ph -> E* w e. B ( A .+ w ) = .0. ) |