| Step | Hyp | Ref | Expression | 
						
							| 1 |  | riotacl |  |-  ( E! x e. A ph -> ( iota_ x e. A ph ) e. A ) | 
						
							| 2 |  | riotaund |  |-  ( -. E! x e. A ph -> ( iota_ x e. A ph ) = (/) ) | 
						
							| 3 | 2 | eleq1d |  |-  ( -. E! x e. A ph -> ( ( iota_ x e. A ph ) e. A <-> (/) e. A ) ) | 
						
							| 4 | 3 | notbid |  |-  ( -. E! x e. A ph -> ( -. ( iota_ x e. A ph ) e. A <-> -. (/) e. A ) ) | 
						
							| 5 | 4 | biimprcd |  |-  ( -. (/) e. A -> ( -. E! x e. A ph -> -. ( iota_ x e. A ph ) e. A ) ) | 
						
							| 6 | 5 | con4d |  |-  ( -. (/) e. A -> ( ( iota_ x e. A ph ) e. A -> E! x e. A ph ) ) | 
						
							| 7 | 1 6 | impbid2 |  |-  ( -. (/) e. A -> ( E! x e. A ph <-> ( iota_ x e. A ph ) e. A ) ) |