| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlimneg.1 |
|- ( ( ph /\ k e. A ) -> B e. V ) |
| 2 |
|
rlimneg.2 |
|- ( ph -> ( k e. A |-> B ) ~~>r C ) |
| 3 |
|
0cnd |
|- ( ( ph /\ k e. A ) -> 0 e. CC ) |
| 4 |
1 2
|
rlimmptrcl |
|- ( ( ph /\ k e. A ) -> B e. CC ) |
| 5 |
1
|
ralrimiva |
|- ( ph -> A. k e. A B e. V ) |
| 6 |
|
dmmptg |
|- ( A. k e. A B e. V -> dom ( k e. A |-> B ) = A ) |
| 7 |
5 6
|
syl |
|- ( ph -> dom ( k e. A |-> B ) = A ) |
| 8 |
|
rlimss |
|- ( ( k e. A |-> B ) ~~>r C -> dom ( k e. A |-> B ) C_ RR ) |
| 9 |
2 8
|
syl |
|- ( ph -> dom ( k e. A |-> B ) C_ RR ) |
| 10 |
7 9
|
eqsstrrd |
|- ( ph -> A C_ RR ) |
| 11 |
|
0cn |
|- 0 e. CC |
| 12 |
|
rlimconst |
|- ( ( A C_ RR /\ 0 e. CC ) -> ( k e. A |-> 0 ) ~~>r 0 ) |
| 13 |
10 11 12
|
sylancl |
|- ( ph -> ( k e. A |-> 0 ) ~~>r 0 ) |
| 14 |
3 4 13 2
|
rlimsub |
|- ( ph -> ( k e. A |-> ( 0 - B ) ) ~~>r ( 0 - C ) ) |
| 15 |
|
df-neg |
|- -u B = ( 0 - B ) |
| 16 |
15
|
mpteq2i |
|- ( k e. A |-> -u B ) = ( k e. A |-> ( 0 - B ) ) |
| 17 |
|
df-neg |
|- -u C = ( 0 - C ) |
| 18 |
14 16 17
|
3brtr4g |
|- ( ph -> ( k e. A |-> -u B ) ~~>r -u C ) |