| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rlmbas |
|- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
| 2 |
|
id |
|- ( ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) -> ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) ) |
| 3 |
|
rlmplusg |
|- ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) |
| 4 |
3
|
a1i |
|- ( ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) -> ( +g ` R ) = ( +g ` ( ringLMod ` R ) ) ) |
| 5 |
|
rlmds |
|- ( dist ` R ) = ( dist ` ( ringLMod ` R ) ) |
| 6 |
5
|
a1i |
|- ( ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) -> ( dist ` R ) = ( dist ` ( ringLMod ` R ) ) ) |
| 7 |
2 4 6
|
nmpropd |
|- ( ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) -> ( norm ` R ) = ( norm ` ( ringLMod ` R ) ) ) |
| 8 |
1 7
|
ax-mp |
|- ( norm ` R ) = ( norm ` ( ringLMod ` R ) ) |