Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
2 |
1
|
adantl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. CC ) |
3 |
2
|
2timesd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. N ) = ( N + N ) ) |
4 |
3
|
oveq2d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( 2 x. N ) ) = ( A rmY ( N + N ) ) ) |
5 |
|
rmyadd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N e. ZZ ) -> ( A rmY ( N + N ) ) = ( ( ( A rmY N ) x. ( A rmX N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) ) |
6 |
5
|
3anidm23 |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + N ) ) = ( ( ( A rmY N ) x. ( A rmX N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) ) |
7 |
|
2cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> 2 e. CC ) |
8 |
|
frmx |
|- rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 |
9 |
8
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) |
10 |
9
|
nn0cnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) |
11 |
|
frmy |
|- rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ |
12 |
11
|
fovcl |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) |
13 |
12
|
zcnd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) |
14 |
7 10 13
|
mulassd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) = ( 2 x. ( ( A rmX N ) x. ( A rmY N ) ) ) ) |
15 |
10 13
|
mulcld |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmY N ) ) e. CC ) |
16 |
15
|
2timesd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmX N ) x. ( A rmY N ) ) ) = ( ( ( A rmX N ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) ) |
17 |
10 13
|
mulcomd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmY N ) ) = ( ( A rmY N ) x. ( A rmX N ) ) ) |
18 |
17
|
oveq1d |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) = ( ( ( A rmY N ) x. ( A rmX N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) ) |
19 |
14 16 18
|
3eqtrrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmY N ) x. ( A rmX N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) ) |
20 |
4 6 19
|
3eqtrd |
|- ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( 2 x. N ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) ) |