| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 2 | 1 | adantl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> N e. CC ) | 
						
							| 3 | 2 | 2timesd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. N ) = ( N + N ) ) | 
						
							| 4 | 3 | oveq2d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( 2 x. N ) ) = ( A rmY ( N + N ) ) ) | 
						
							| 5 |  | rmyadd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ /\ N e. ZZ ) -> ( A rmY ( N + N ) ) = ( ( ( A rmY N ) x. ( A rmX N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) ) | 
						
							| 6 | 5 | 3anidm23 |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( N + N ) ) = ( ( ( A rmY N ) x. ( A rmX N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) ) | 
						
							| 7 |  | 2cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> 2 e. CC ) | 
						
							| 8 |  | frmx |  |-  rmX : ( ( ZZ>= ` 2 ) X. ZZ ) --> NN0 | 
						
							| 9 | 8 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. NN0 ) | 
						
							| 10 | 9 | nn0cnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmX N ) e. CC ) | 
						
							| 11 |  | frmy |  |-  rmY : ( ( ZZ>= ` 2 ) X. ZZ ) --> ZZ | 
						
							| 12 | 11 | fovcl |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. ZZ ) | 
						
							| 13 | 12 | zcnd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY N ) e. CC ) | 
						
							| 14 | 7 10 13 | mulassd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) = ( 2 x. ( ( A rmX N ) x. ( A rmY N ) ) ) ) | 
						
							| 15 | 10 13 | mulcld |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmY N ) ) e. CC ) | 
						
							| 16 | 15 | 2timesd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( 2 x. ( ( A rmX N ) x. ( A rmY N ) ) ) = ( ( ( A rmX N ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) ) | 
						
							| 17 | 10 13 | mulcomd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( A rmX N ) x. ( A rmY N ) ) = ( ( A rmY N ) x. ( A rmX N ) ) ) | 
						
							| 18 | 17 | oveq1d |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmX N ) x. ( A rmY N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) = ( ( ( A rmY N ) x. ( A rmX N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) ) | 
						
							| 19 | 14 16 18 | 3eqtrrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( ( ( A rmY N ) x. ( A rmX N ) ) + ( ( A rmX N ) x. ( A rmY N ) ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) ) | 
						
							| 20 | 4 6 19 | 3eqtrd |  |-  ( ( A e. ( ZZ>= ` 2 ) /\ N e. ZZ ) -> ( A rmY ( 2 x. N ) ) = ( ( 2 x. ( A rmX N ) ) x. ( A rmY N ) ) ) |