Metamath Proof Explorer


Theorem rnghmresel

Description: An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypothesis rnghmresel.h
|- ( ph -> H = ( RngHomo |` ( B X. B ) ) )
Assertion rnghmresel
|- ( ( ph /\ ( X e. B /\ Y e. B ) /\ F e. ( X H Y ) ) -> F e. ( X RngHomo Y ) )

Proof

Step Hyp Ref Expression
1 rnghmresel.h
 |-  ( ph -> H = ( RngHomo |` ( B X. B ) ) )
2 1 adantr
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> H = ( RngHomo |` ( B X. B ) ) )
3 2 oveqd
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X H Y ) = ( X ( RngHomo |` ( B X. B ) ) Y ) )
4 ovres
 |-  ( ( X e. B /\ Y e. B ) -> ( X ( RngHomo |` ( B X. B ) ) Y ) = ( X RngHomo Y ) )
5 4 adantl
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X ( RngHomo |` ( B X. B ) ) Y ) = ( X RngHomo Y ) )
6 3 5 eqtrd
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( X H Y ) = ( X RngHomo Y ) )
7 6 eleq2d
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) ) -> ( F e. ( X H Y ) <-> F e. ( X RngHomo Y ) ) )
8 7 biimp3a
 |-  ( ( ph /\ ( X e. B /\ Y e. B ) /\ F e. ( X H Y ) ) -> F e. ( X RngHomo Y ) )