Metamath Proof Explorer


Theorem rnghmresel

Description: An element of the non-unital ring homomorphisms restricted to a subset of non-unital rings is a non-unital ring homomorphisms. (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypothesis rnghmresel.h φ H = RngHomo B × B
Assertion rnghmresel φ X B Y B F X H Y F X RngHomo Y

Proof

Step Hyp Ref Expression
1 rnghmresel.h φ H = RngHomo B × B
2 1 adantr φ X B Y B H = RngHomo B × B
3 2 oveqd φ X B Y B X H Y = X RngHomo B × B Y
4 ovres X B Y B X RngHomo B × B Y = X RngHomo Y
5 4 adantl φ X B Y B X RngHomo B × B Y = X RngHomo Y
6 3 5 eqtrd φ X B Y B X H Y = X RngHomo Y
7 6 eleq2d φ X B Y B F X H Y F X RngHomo Y
8 7 biimp3a φ X B Y B F X H Y F X RngHomo Y