Description: The ring unity of a two-sided ideal of a non-unital ring belongs to the base set of the ring. (Contributed by AV, 15-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rng2idlring.r | |- ( ph -> R e. Rng ) | |
| rng2idlring.i | |- ( ph -> I e. ( 2Ideal ` R ) ) | ||
| rng2idlring.j | |- J = ( R |`s I ) | ||
| rng2idlring.u | |- ( ph -> J e. Ring ) | ||
| rng2idlring.b | |- B = ( Base ` R ) | ||
| rng2idlring.t | |- .x. = ( .r ` R ) | ||
| rng2idlring.1 | |- .1. = ( 1r ` J ) | ||
| Assertion | rngqiprng1elbas | |- ( ph -> .1. e. B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rng2idlring.r | |- ( ph -> R e. Rng ) | |
| 2 | rng2idlring.i | |- ( ph -> I e. ( 2Ideal ` R ) ) | |
| 3 | rng2idlring.j | |- J = ( R |`s I ) | |
| 4 | rng2idlring.u | |- ( ph -> J e. Ring ) | |
| 5 | rng2idlring.b | |- B = ( Base ` R ) | |
| 6 | rng2idlring.t | |- .x. = ( .r ` R ) | |
| 7 | rng2idlring.1 | |- .1. = ( 1r ` J ) | |
| 8 | 3 5 | ressbasss | |- ( Base ` J ) C_ B | 
| 9 | eqid | |- ( Base ` J ) = ( Base ` J ) | |
| 10 | 9 7 | ringidcl | |- ( J e. Ring -> .1. e. ( Base ` J ) ) | 
| 11 | 4 10 | syl | |- ( ph -> .1. e. ( Base ` J ) ) | 
| 12 | 8 11 | sselid | |- ( ph -> .1. e. B ) |