Metamath Proof Explorer


Theorem rngqiprng1elbas

Description: The ring unity of a two-sided ideal of a non-unital ring belongs to the base set of the ring. (Contributed by AV, 15-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r
|- ( ph -> R e. Rng )
rng2idlring.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlring.j
|- J = ( R |`s I )
rng2idlring.u
|- ( ph -> J e. Ring )
rng2idlring.b
|- B = ( Base ` R )
rng2idlring.t
|- .x. = ( .r ` R )
rng2idlring.1
|- .1. = ( 1r ` J )
Assertion rngqiprng1elbas
|- ( ph -> .1. e. B )

Proof

Step Hyp Ref Expression
1 rng2idlring.r
 |-  ( ph -> R e. Rng )
2 rng2idlring.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlring.j
 |-  J = ( R |`s I )
4 rng2idlring.u
 |-  ( ph -> J e. Ring )
5 rng2idlring.b
 |-  B = ( Base ` R )
6 rng2idlring.t
 |-  .x. = ( .r ` R )
7 rng2idlring.1
 |-  .1. = ( 1r ` J )
8 3 5 ressbasss
 |-  ( Base ` J ) C_ B
9 eqid
 |-  ( Base ` J ) = ( Base ` J )
10 9 7 ringidcl
 |-  ( J e. Ring -> .1. e. ( Base ` J ) )
11 4 10 syl
 |-  ( ph -> .1. e. ( Base ` J ) )
12 8 11 sselid
 |-  ( ph -> .1. e. B )