Description: The ring unity of a two-sided ideal of a non-unital ring belongs to the base set of the ring. (Contributed by AV, 15-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |- ( ph -> R e. Rng ) |
|
rng2idlring.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
||
rng2idlring.j | |- J = ( R |`s I ) |
||
rng2idlring.u | |- ( ph -> J e. Ring ) |
||
rng2idlring.b | |- B = ( Base ` R ) |
||
rng2idlring.t | |- .x. = ( .r ` R ) |
||
rng2idlring.1 | |- .1. = ( 1r ` J ) |
||
Assertion | rngqiprng1elbas | |- ( ph -> .1. e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |- ( ph -> R e. Rng ) |
|
2 | rng2idlring.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
3 | rng2idlring.j | |- J = ( R |`s I ) |
|
4 | rng2idlring.u | |- ( ph -> J e. Ring ) |
|
5 | rng2idlring.b | |- B = ( Base ` R ) |
|
6 | rng2idlring.t | |- .x. = ( .r ` R ) |
|
7 | rng2idlring.1 | |- .1. = ( 1r ` J ) |
|
8 | 3 5 | ressbasss | |- ( Base ` J ) C_ B |
9 | eqid | |- ( Base ` J ) = ( Base ` J ) |
|
10 | 9 7 | ringidcl | |- ( J e. Ring -> .1. e. ( Base ` J ) ) |
11 | 4 10 | syl | |- ( ph -> .1. e. ( Base ` J ) ) |
12 | 8 11 | sselid | |- ( ph -> .1. e. B ) |