| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
| 4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
| 6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
| 9 |
2 3 8
|
2idlelbas |
|- ( ph -> ( ( Base ` J ) e. ( LIdeal ` R ) /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) ) |
| 10 |
9
|
simprd |
|- ( ph -> ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) |
| 11 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
| 12 |
4 11
|
syl |
|- ( ph -> J e. Rng ) |
| 13 |
3 12
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
| 14 |
1 2 13
|
rng2idl0 |
|- ( ph -> ( 0g ` R ) e. I ) |
| 15 |
2 3 8
|
2idlbas |
|- ( ph -> ( Base ` J ) = I ) |
| 16 |
14 15
|
eleqtrrd |
|- ( ph -> ( 0g ` R ) e. ( Base ` J ) ) |
| 17 |
1 10 16
|
3jca |
|- ( ph -> ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. ( Base ` J ) ) ) |
| 18 |
8 7
|
ringidcl |
|- ( J e. Ring -> .1. e. ( Base ` J ) ) |
| 19 |
4 18
|
syl |
|- ( ph -> .1. e. ( Base ` J ) ) |
| 20 |
19
|
anim1ci |
|- ( ( ph /\ A e. B ) -> ( A e. B /\ .1. e. ( Base ` J ) ) ) |
| 21 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 22 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
| 23 |
21 5 6 22
|
rngridlmcl |
|- ( ( ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. ( Base ` J ) ) /\ ( A e. B /\ .1. e. ( Base ` J ) ) ) -> ( .1. .x. A ) e. ( Base ` J ) ) |
| 24 |
17 20 23
|
syl2an2r |
|- ( ( ph /\ A e. B ) -> ( .1. .x. A ) e. ( Base ` J ) ) |