Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
9 |
2 3 8
|
2idlelbas |
|- ( ph -> ( ( Base ` J ) e. ( LIdeal ` R ) /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) ) |
10 |
9
|
simprd |
|- ( ph -> ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) |
11 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
12 |
4 11
|
syl |
|- ( ph -> J e. Rng ) |
13 |
3 12
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
14 |
1 2 13
|
rng2idl0 |
|- ( ph -> ( 0g ` R ) e. I ) |
15 |
2 3 8
|
2idlbas |
|- ( ph -> ( Base ` J ) = I ) |
16 |
14 15
|
eleqtrrd |
|- ( ph -> ( 0g ` R ) e. ( Base ` J ) ) |
17 |
1 10 16
|
3jca |
|- ( ph -> ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. ( Base ` J ) ) ) |
18 |
8 7
|
ringidcl |
|- ( J e. Ring -> .1. e. ( Base ` J ) ) |
19 |
4 18
|
syl |
|- ( ph -> .1. e. ( Base ` J ) ) |
20 |
19
|
anim1ci |
|- ( ( ph /\ A e. B ) -> ( A e. B /\ .1. e. ( Base ` J ) ) ) |
21 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
22 |
|
eqid |
|- ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) |
23 |
21 5 6 22
|
rngridlmcl |
|- ( ( ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. ( Base ` J ) ) /\ ( A e. B /\ .1. e. ( Base ` J ) ) ) -> ( .1. .x. A ) e. ( Base ` J ) ) |
24 |
17 20 23
|
syl2an2r |
|- ( ( ph /\ A e. B ) -> ( .1. .x. A ) e. ( Base ` J ) ) |