Metamath Proof Explorer


Theorem rngqiprngghmlem1

Description: Lemma 1 for rngqiprngghm . (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r
|- ( ph -> R e. Rng )
rng2idlring.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlring.j
|- J = ( R |`s I )
rng2idlring.u
|- ( ph -> J e. Ring )
rng2idlring.b
|- B = ( Base ` R )
rng2idlring.t
|- .x. = ( .r ` R )
rng2idlring.1
|- .1. = ( 1r ` J )
Assertion rngqiprngghmlem1
|- ( ( ph /\ A e. B ) -> ( .1. .x. A ) e. ( Base ` J ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r
 |-  ( ph -> R e. Rng )
2 rng2idlring.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlring.j
 |-  J = ( R |`s I )
4 rng2idlring.u
 |-  ( ph -> J e. Ring )
5 rng2idlring.b
 |-  B = ( Base ` R )
6 rng2idlring.t
 |-  .x. = ( .r ` R )
7 rng2idlring.1
 |-  .1. = ( 1r ` J )
8 eqid
 |-  ( Base ` J ) = ( Base ` J )
9 2 3 8 2idlelbas
 |-  ( ph -> ( ( Base ` J ) e. ( LIdeal ` R ) /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) )
10 9 simprd
 |-  ( ph -> ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) )
11 ringrng
 |-  ( J e. Ring -> J e. Rng )
12 4 11 syl
 |-  ( ph -> J e. Rng )
13 3 12 eqeltrrid
 |-  ( ph -> ( R |`s I ) e. Rng )
14 1 2 13 rng2idl0
 |-  ( ph -> ( 0g ` R ) e. I )
15 2 3 8 2idlbas
 |-  ( ph -> ( Base ` J ) = I )
16 14 15 eleqtrrd
 |-  ( ph -> ( 0g ` R ) e. ( Base ` J ) )
17 1 10 16 3jca
 |-  ( ph -> ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. ( Base ` J ) ) )
18 8 7 ringidcl
 |-  ( J e. Ring -> .1. e. ( Base ` J ) )
19 4 18 syl
 |-  ( ph -> .1. e. ( Base ` J ) )
20 19 anim1ci
 |-  ( ( ph /\ A e. B ) -> ( A e. B /\ .1. e. ( Base ` J ) ) )
21 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
22 eqid
 |-  ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) )
23 21 5 6 22 rngridlmcl
 |-  ( ( ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. ( Base ` J ) ) /\ ( A e. B /\ .1. e. ( Base ` J ) ) ) -> ( .1. .x. A ) e. ( Base ` J ) )
24 17 20 23 syl2an2r
 |-  ( ( ph /\ A e. B ) -> ( .1. .x. A ) e. ( Base ` J ) )