| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r |  |-  ( ph -> R e. Rng ) | 
						
							| 2 |  | rng2idlring.i |  |-  ( ph -> I e. ( 2Ideal ` R ) ) | 
						
							| 3 |  | rng2idlring.j |  |-  J = ( R |`s I ) | 
						
							| 4 |  | rng2idlring.u |  |-  ( ph -> J e. Ring ) | 
						
							| 5 |  | rng2idlring.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | rng2idlring.t |  |-  .x. = ( .r ` R ) | 
						
							| 7 |  | rng2idlring.1 |  |-  .1. = ( 1r ` J ) | 
						
							| 8 |  | eqid |  |-  ( Base ` J ) = ( Base ` J ) | 
						
							| 9 | 2 3 8 | 2idlelbas |  |-  ( ph -> ( ( Base ` J ) e. ( LIdeal ` R ) /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) ) | 
						
							| 10 | 9 | simprd |  |-  ( ph -> ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) ) | 
						
							| 11 |  | ringrng |  |-  ( J e. Ring -> J e. Rng ) | 
						
							| 12 | 4 11 | syl |  |-  ( ph -> J e. Rng ) | 
						
							| 13 | 3 12 | eqeltrrid |  |-  ( ph -> ( R |`s I ) e. Rng ) | 
						
							| 14 | 1 2 13 | rng2idl0 |  |-  ( ph -> ( 0g ` R ) e. I ) | 
						
							| 15 | 2 3 8 | 2idlbas |  |-  ( ph -> ( Base ` J ) = I ) | 
						
							| 16 | 14 15 | eleqtrrd |  |-  ( ph -> ( 0g ` R ) e. ( Base ` J ) ) | 
						
							| 17 | 1 10 16 | 3jca |  |-  ( ph -> ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. ( Base ` J ) ) ) | 
						
							| 18 | 8 7 | ringidcl |  |-  ( J e. Ring -> .1. e. ( Base ` J ) ) | 
						
							| 19 | 4 18 | syl |  |-  ( ph -> .1. e. ( Base ` J ) ) | 
						
							| 20 | 19 | anim1ci |  |-  ( ( ph /\ A e. B ) -> ( A e. B /\ .1. e. ( Base ` J ) ) ) | 
						
							| 21 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 22 |  | eqid |  |-  ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) ) | 
						
							| 23 | 21 5 6 22 | rngridlmcl |  |-  ( ( ( R e. Rng /\ ( Base ` J ) e. ( LIdeal ` ( oppR ` R ) ) /\ ( 0g ` R ) e. ( Base ` J ) ) /\ ( A e. B /\ .1. e. ( Base ` J ) ) ) -> ( .1. .x. A ) e. ( Base ` J ) ) | 
						
							| 24 | 17 20 23 | syl2an2r |  |-  ( ( ph /\ A e. B ) -> ( .1. .x. A ) e. ( Base ` J ) ) |