Description: The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlsubrng.r | |- ( ph -> R e. Rng ) |
|
rng2idlsubrng.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
||
rng2idlsubrng.u | |- ( ph -> ( R |`s I ) e. Rng ) |
||
Assertion | rng2idl0 | |- ( ph -> ( 0g ` R ) e. I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlsubrng.r | |- ( ph -> R e. Rng ) |
|
2 | rng2idlsubrng.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
3 | rng2idlsubrng.u | |- ( ph -> ( R |`s I ) e. Rng ) |
|
4 | 1 2 3 | rng2idlsubrng | |- ( ph -> I e. ( SubRng ` R ) ) |
5 | subrngsubg | |- ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) |
|
6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
7 | 6 | subg0cl | |- ( I e. ( SubGrp ` R ) -> ( 0g ` R ) e. I ) |
8 | 4 5 7 | 3syl | |- ( ph -> ( 0g ` R ) e. I ) |