Metamath Proof Explorer


Theorem rng2idl0

Description: The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses rng2idlsubrng.r
|- ( ph -> R e. Rng )
rng2idlsubrng.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlsubrng.u
|- ( ph -> ( R |`s I ) e. Rng )
Assertion rng2idl0
|- ( ph -> ( 0g ` R ) e. I )

Proof

Step Hyp Ref Expression
1 rng2idlsubrng.r
 |-  ( ph -> R e. Rng )
2 rng2idlsubrng.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlsubrng.u
 |-  ( ph -> ( R |`s I ) e. Rng )
4 1 2 3 rng2idlsubrng
 |-  ( ph -> I e. ( SubRng ` R ) )
5 subrngsubg
 |-  ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) )
6 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
7 6 subg0cl
 |-  ( I e. ( SubGrp ` R ) -> ( 0g ` R ) e. I )
8 4 5 7 3syl
 |-  ( ph -> ( 0g ` R ) e. I )