Description: The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rng2idlsubrng.r | |- ( ph -> R e. Rng ) |
|
| rng2idlsubrng.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
||
| rng2idlsubrng.u | |- ( ph -> ( R |`s I ) e. Rng ) |
||
| Assertion | rng2idl0 | |- ( ph -> ( 0g ` R ) e. I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rng2idlsubrng.r | |- ( ph -> R e. Rng ) |
|
| 2 | rng2idlsubrng.i | |- ( ph -> I e. ( 2Ideal ` R ) ) |
|
| 3 | rng2idlsubrng.u | |- ( ph -> ( R |`s I ) e. Rng ) |
|
| 4 | 1 2 3 | rng2idlsubrng | |- ( ph -> I e. ( SubRng ` R ) ) |
| 5 | subrngsubg | |- ( I e. ( SubRng ` R ) -> I e. ( SubGrp ` R ) ) |
|
| 6 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 7 | 6 | subg0cl | |- ( I e. ( SubGrp ` R ) -> ( 0g ` R ) e. I ) |
| 8 | 4 5 7 | 3syl | |- ( ph -> ( 0g ` R ) e. I ) |