Metamath Proof Explorer


Theorem rng2idl0

Description: The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses rng2idlsubrng.r ( 𝜑𝑅 ∈ Rng )
rng2idlsubrng.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlsubrng.u ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
Assertion rng2idl0 ( 𝜑 → ( 0g𝑅 ) ∈ 𝐼 )

Proof

Step Hyp Ref Expression
1 rng2idlsubrng.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlsubrng.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlsubrng.u ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
4 1 2 3 rng2idlsubrng ( 𝜑𝐼 ∈ ( SubRng ‘ 𝑅 ) )
5 subrngsubg ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
6 eqid ( 0g𝑅 ) = ( 0g𝑅 )
7 6 subg0cl ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g𝑅 ) ∈ 𝐼 )
8 4 5 7 3syl ( 𝜑 → ( 0g𝑅 ) ∈ 𝐼 )