Description: The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlsubrng.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
rng2idlsubrng.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | ||
rng2idlsubrng.u | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) | ||
Assertion | rng2idl0 | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlsubrng.r | ⊢ ( 𝜑 → 𝑅 ∈ Rng ) | |
2 | rng2idlsubrng.i | ⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) | |
3 | rng2idlsubrng.u | ⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) | |
4 | 1 2 3 | rng2idlsubrng | ⊢ ( 𝜑 → 𝐼 ∈ ( SubRng ‘ 𝑅 ) ) |
5 | subrngsubg | ⊢ ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) | |
6 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
7 | 6 | subg0cl | ⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
8 | 4 5 7 | 3syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |