Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
9 |
2 3 8
|
2idlelbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
10 |
9
|
simprd |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
11 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
12 |
4 11
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
13 |
3 12
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
14 |
1 2 13
|
rng2idl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
15 |
2 3 8
|
2idlbas |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 ) |
16 |
14 15
|
eleqtrrd |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝐽 ) ) |
17 |
1 10 16
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝐽 ) ) ) |
18 |
8 7
|
ringidcl |
⊢ ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝐽 ) ) |
20 |
19
|
anim1ci |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ 𝐵 ∧ 1 ∈ ( Base ‘ 𝐽 ) ) ) |
21 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
22 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
23 |
21 5 6 22
|
rngridlmcl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ∧ ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝐽 ) ) ∧ ( 𝐴 ∈ 𝐵 ∧ 1 ∈ ( Base ‘ 𝐽 ) ) ) → ( 1 · 𝐴 ) ∈ ( Base ‘ 𝐽 ) ) |
24 |
17 20 23
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( 1 · 𝐴 ) ∈ ( Base ‘ 𝐽 ) ) |