Metamath Proof Explorer


Theorem rngqiprngghmlem1

Description: Lemma 1 for rngqiprngghm . (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
Assertion rngqiprngghmlem1 ( ( 𝜑𝐴𝐵 ) → ( 1 · 𝐴 ) ∈ ( Base ‘ 𝐽 ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 eqid ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 )
9 2 3 8 2idlelbas ( 𝜑 → ( ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ) )
10 9 simprd ( 𝜑 → ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr𝑅 ) ) )
11 ringrng ( 𝐽 ∈ Ring → 𝐽 ∈ Rng )
12 4 11 syl ( 𝜑𝐽 ∈ Rng )
13 3 12 eqeltrrid ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
14 1 2 13 rng2idl0 ( 𝜑 → ( 0g𝑅 ) ∈ 𝐼 )
15 2 3 8 2idlbas ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 )
16 14 15 eleqtrrd ( 𝜑 → ( 0g𝑅 ) ∈ ( Base ‘ 𝐽 ) )
17 1 10 16 3jca ( 𝜑 → ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ∧ ( 0g𝑅 ) ∈ ( Base ‘ 𝐽 ) ) )
18 8 7 ringidcl ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) )
19 4 18 syl ( 𝜑1 ∈ ( Base ‘ 𝐽 ) )
20 19 anim1ci ( ( 𝜑𝐴𝐵 ) → ( 𝐴𝐵1 ∈ ( Base ‘ 𝐽 ) ) )
21 eqid ( 0g𝑅 ) = ( 0g𝑅 )
22 eqid ( LIdeal ‘ ( oppr𝑅 ) ) = ( LIdeal ‘ ( oppr𝑅 ) )
23 21 5 6 22 rngridlmcl ( ( ( 𝑅 ∈ Rng ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ∧ ( 0g𝑅 ) ∈ ( Base ‘ 𝐽 ) ) ∧ ( 𝐴𝐵1 ∈ ( Base ‘ 𝐽 ) ) ) → ( 1 · 𝐴 ) ∈ ( Base ‘ 𝐽 ) )
24 17 20 23 syl2an2r ( ( 𝜑𝐴𝐵 ) → ( 1 · 𝐴 ) ∈ ( Base ‘ 𝐽 ) )