| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
| 4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
| 5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
| 8 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
| 9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → 𝐽 ∈ Rng ) |
| 11 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( 1 · 𝐴 ) ∈ ( Base ‘ 𝐽 ) ) |
| 12 |
11
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 1 · 𝐴 ) ∈ ( Base ‘ 𝐽 ) ) |
| 13 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝐵 ) → ( 1 · 𝐶 ) ∈ ( Base ‘ 𝐽 ) ) |
| 14 |
13
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( 1 · 𝐶 ) ∈ ( Base ‘ 𝐽 ) ) |
| 15 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
| 16 |
|
eqid |
⊢ ( +g ‘ 𝐽 ) = ( +g ‘ 𝐽 ) |
| 17 |
15 16
|
rngacl |
⊢ ( ( 𝐽 ∈ Rng ∧ ( 1 · 𝐴 ) ∈ ( Base ‘ 𝐽 ) ∧ ( 1 · 𝐶 ) ∈ ( Base ‘ 𝐽 ) ) → ( ( 1 · 𝐴 ) ( +g ‘ 𝐽 ) ( 1 · 𝐶 ) ) ∈ ( Base ‘ 𝐽 ) ) |
| 18 |
10 12 14 17
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵 ) ) → ( ( 1 · 𝐴 ) ( +g ‘ 𝐽 ) ( 1 · 𝐶 ) ) ∈ ( Base ‘ 𝐽 ) ) |