Metamath Proof Explorer


Theorem rngqiprngghm

Description: F is a homomorphism of the additive groups of non-unital rings. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
rngqiprngim.q 𝑄 = ( 𝑅 /s )
rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
Assertion rngqiprngghm ( 𝜑𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngim.q 𝑄 = ( 𝑅 /s )
10 rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
11 rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
12 rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
13 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
14 eqid ( +g𝑅 ) = ( +g𝑅 )
15 eqid ( +g𝑃 ) = ( +g𝑃 )
16 rnggrp ( 𝑅 ∈ Rng → 𝑅 ∈ Grp )
17 1 16 syl ( 𝜑𝑅 ∈ Grp )
18 1 2 3 4 5 6 7 8 9 10 11 rngqiprng ( 𝜑𝑃 ∈ Rng )
19 rnggrp ( 𝑃 ∈ Rng → 𝑃 ∈ Grp )
20 18 19 syl ( 𝜑𝑃 ∈ Grp )
21 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimf ( 𝜑𝐹 : 𝐵 ⟶ ( 𝐶 × 𝐼 ) )
22 1 2 3 4 5 6 7 8 9 10 11 rngqipbas ( 𝜑 → ( Base ‘ 𝑃 ) = ( 𝐶 × 𝐼 ) )
23 22 feq3d ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ↔ 𝐹 : 𝐵 ⟶ ( 𝐶 × 𝐼 ) ) )
24 21 23 mpbird ( 𝜑𝐹 : 𝐵 ⟶ ( Base ‘ 𝑃 ) )
25 ringrng ( 𝐽 ∈ Ring → 𝐽 ∈ Rng )
26 4 25 syl ( 𝜑𝐽 ∈ Rng )
27 3 26 eqeltrrid ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
28 1 2 27 rng2idlnsg ( 𝜑𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
29 28 5 8 9 ecqusaddd ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → [ ( 𝑎 ( +g𝑅 ) 𝑏 ) ] = ( [ 𝑎 ] ( +g𝑄 ) [ 𝑏 ] ) )
30 1 2 3 4 5 6 7 rngqiprngghmlem3 ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 1 · ( 𝑎 ( +g𝑅 ) 𝑏 ) ) = ( ( 1 · 𝑎 ) ( +g𝐽 ) ( 1 · 𝑏 ) ) )
31 29 30 opeq12d ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ⟨ [ ( 𝑎 ( +g𝑅 ) 𝑏 ) ] , ( 1 · ( 𝑎 ( +g𝑅 ) 𝑏 ) ) ⟩ = ⟨ ( [ 𝑎 ] ( +g𝑄 ) [ 𝑏 ] ) , ( ( 1 · 𝑎 ) ( +g𝐽 ) ( 1 · 𝑏 ) ) ⟩ )
32 eqid ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 )
33 eqid ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 )
34 9 ovexi 𝑄 ∈ V
35 34 a1i ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑄 ∈ V )
36 4 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝐽 ∈ Ring )
37 simpl ( ( 𝑎𝐵𝑏𝐵 ) → 𝑎𝐵 )
38 8 9 5 32 quseccl0 ( ( 𝑅 ∈ Rng ∧ 𝑎𝐵 ) → [ 𝑎 ] ∈ ( Base ‘ 𝑄 ) )
39 1 37 38 syl2an ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → [ 𝑎 ] ∈ ( Base ‘ 𝑄 ) )
40 1 2 3 4 5 6 7 rngqiprngghmlem1 ( ( 𝜑𝑎𝐵 ) → ( 1 · 𝑎 ) ∈ ( Base ‘ 𝐽 ) )
41 40 adantrr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 1 · 𝑎 ) ∈ ( Base ‘ 𝐽 ) )
42 simpr ( ( 𝑎𝐵𝑏𝐵 ) → 𝑏𝐵 )
43 8 9 5 32 quseccl0 ( ( 𝑅 ∈ Rng ∧ 𝑏𝐵 ) → [ 𝑏 ] ∈ ( Base ‘ 𝑄 ) )
44 1 42 43 syl2an ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → [ 𝑏 ] ∈ ( Base ‘ 𝑄 ) )
45 1 2 3 4 5 6 7 rngqiprngghmlem1 ( ( 𝜑𝑏𝐵 ) → ( 1 · 𝑏 ) ∈ ( Base ‘ 𝐽 ) )
46 45 adantrl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 1 · 𝑏 ) ∈ ( Base ‘ 𝐽 ) )
47 28 5 8 9 ecqusaddcl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( [ 𝑎 ] ( +g𝑄 ) [ 𝑏 ] ) ∈ ( Base ‘ 𝑄 ) )
48 1 2 3 4 5 6 7 rngqiprngghmlem2 ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( 1 · 𝑎 ) ( +g𝐽 ) ( 1 · 𝑏 ) ) ∈ ( Base ‘ 𝐽 ) )
49 eqid ( +g𝑄 ) = ( +g𝑄 )
50 eqid ( +g𝐽 ) = ( +g𝐽 )
51 11 32 33 35 36 39 41 44 46 47 48 49 50 15 xpsadd ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ( +g𝑃 ) ⟨ [ 𝑏 ] , ( 1 · 𝑏 ) ⟩ ) = ⟨ ( [ 𝑎 ] ( +g𝑄 ) [ 𝑏 ] ) , ( ( 1 · 𝑎 ) ( +g𝐽 ) ( 1 · 𝑏 ) ) ⟩ )
52 31 51 eqtr4d ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ⟨ [ ( 𝑎 ( +g𝑅 ) 𝑏 ) ] , ( 1 · ( 𝑎 ( +g𝑅 ) 𝑏 ) ) ⟩ = ( ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ( +g𝑃 ) ⟨ [ 𝑏 ] , ( 1 · 𝑏 ) ⟩ ) )
53 1 adantr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑅 ∈ Rng )
54 37 adantl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑎𝐵 )
55 42 adantl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → 𝑏𝐵 )
56 5 14 rngacl ( ( 𝑅 ∈ Rng ∧ 𝑎𝐵𝑏𝐵 ) → ( 𝑎 ( +g𝑅 ) 𝑏 ) ∈ 𝐵 )
57 53 54 55 56 syl3anc ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝑎 ( +g𝑅 ) 𝑏 ) ∈ 𝐵 )
58 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv ( ( 𝜑 ∧ ( 𝑎 ( +g𝑅 ) 𝑏 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑅 ) 𝑏 ) ) = ⟨ [ ( 𝑎 ( +g𝑅 ) 𝑏 ) ] , ( 1 · ( 𝑎 ( +g𝑅 ) 𝑏 ) ) ⟩ )
59 57 58 syldan ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑅 ) 𝑏 ) ) = ⟨ [ ( 𝑎 ( +g𝑅 ) 𝑏 ) ] , ( 1 · ( 𝑎 ( +g𝑅 ) 𝑏 ) ) ⟩ )
60 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv ( ( 𝜑𝑎𝐵 ) → ( 𝐹𝑎 ) = ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ )
61 60 adantrr ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝐹𝑎 ) = ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ )
62 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv ( ( 𝜑𝑏𝐵 ) → ( 𝐹𝑏 ) = ⟨ [ 𝑏 ] , ( 1 · 𝑏 ) ⟩ )
63 62 adantrl ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝐹𝑏 ) = ⟨ [ 𝑏 ] , ( 1 · 𝑏 ) ⟩ )
64 61 63 oveq12d ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( ( 𝐹𝑎 ) ( +g𝑃 ) ( 𝐹𝑏 ) ) = ( ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ( +g𝑃 ) ⟨ [ 𝑏 ] , ( 1 · 𝑏 ) ⟩ ) )
65 52 59 64 3eqtr4d ( ( 𝜑 ∧ ( 𝑎𝐵𝑏𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g𝑅 ) 𝑏 ) ) = ( ( 𝐹𝑎 ) ( +g𝑃 ) ( 𝐹𝑏 ) ) )
66 5 13 14 15 17 20 24 65 isghmd ( 𝜑𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) )