Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngim.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
11 |
|
rngqiprngim.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
12 |
|
rngqiprngim.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
14 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
15 |
|
eqid |
⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) |
16 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
17 |
1 16
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
18 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprng |
⊢ ( 𝜑 → 𝑃 ∈ Rng ) |
19 |
|
rnggrp |
⊢ ( 𝑃 ∈ Rng → 𝑃 ∈ Grp ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimf |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( 𝐶 × 𝐼 ) ) |
22 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqipbas |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( 𝐶 × 𝐼 ) ) |
23 |
22
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ↔ 𝐹 : 𝐵 ⟶ ( 𝐶 × 𝐼 ) ) ) |
24 |
21 23
|
mpbird |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ) |
25 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
26 |
4 25
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
27 |
3 26
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
28 |
1 2 27
|
rng2idlnsg |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
29 |
28 5 8 9
|
ecqusaddd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ] ∼ = ( [ 𝑎 ] ∼ ( +g ‘ 𝑄 ) [ 𝑏 ] ∼ ) ) |
30 |
1 2 3 4 5 6 7
|
rngqiprngghmlem3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 1 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 1 · 𝑎 ) ( +g ‘ 𝐽 ) ( 1 · 𝑏 ) ) ) |
31 |
29 30
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 〈 [ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ] ∼ , ( 1 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) 〉 = 〈 ( [ 𝑎 ] ∼ ( +g ‘ 𝑄 ) [ 𝑏 ] ∼ ) , ( ( 1 · 𝑎 ) ( +g ‘ 𝐽 ) ( 1 · 𝑏 ) ) 〉 ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
34 |
9
|
ovexi |
⊢ 𝑄 ∈ V |
35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑄 ∈ V ) |
36 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐽 ∈ Ring ) |
37 |
|
simpl |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
38 |
8 9 5 32
|
quseccl0 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑎 ∈ 𝐵 ) → [ 𝑎 ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
39 |
1 37 38
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ 𝑎 ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
40 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 1 · 𝑎 ) ∈ ( Base ‘ 𝐽 ) ) |
41 |
40
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 1 · 𝑎 ) ∈ ( Base ‘ 𝐽 ) ) |
42 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
43 |
8 9 5 32
|
quseccl0 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ) → [ 𝑏 ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
44 |
1 42 43
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ 𝑏 ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
45 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 1 · 𝑏 ) ∈ ( Base ‘ 𝐽 ) ) |
46 |
45
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 1 · 𝑏 ) ∈ ( Base ‘ 𝐽 ) ) |
47 |
28 5 8 9
|
ecqusaddcl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( [ 𝑎 ] ∼ ( +g ‘ 𝑄 ) [ 𝑏 ] ∼ ) ∈ ( Base ‘ 𝑄 ) ) |
48 |
1 2 3 4 5 6 7
|
rngqiprngghmlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 1 · 𝑎 ) ( +g ‘ 𝐽 ) ( 1 · 𝑏 ) ) ∈ ( Base ‘ 𝐽 ) ) |
49 |
|
eqid |
⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) |
50 |
|
eqid |
⊢ ( +g ‘ 𝐽 ) = ( +g ‘ 𝐽 ) |
51 |
11 32 33 35 36 39 41 44 46 47 48 49 50 15
|
xpsadd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ( +g ‘ 𝑃 ) 〈 [ 𝑏 ] ∼ , ( 1 · 𝑏 ) 〉 ) = 〈 ( [ 𝑎 ] ∼ ( +g ‘ 𝑄 ) [ 𝑏 ] ∼ ) , ( ( 1 · 𝑎 ) ( +g ‘ 𝐽 ) ( 1 · 𝑏 ) ) 〉 ) |
52 |
31 51
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 〈 [ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ] ∼ , ( 1 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) 〉 = ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ( +g ‘ 𝑃 ) 〈 [ 𝑏 ] ∼ , ( 1 · 𝑏 ) 〉 ) ) |
53 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑅 ∈ Rng ) |
54 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑎 ∈ 𝐵 ) |
55 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑏 ∈ 𝐵 ) |
56 |
5 14
|
rngacl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
57 |
53 54 55 56
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) |
58 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
⊢ ( ( 𝜑 ∧ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = 〈 [ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ] ∼ , ( 1 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) 〉 ) |
59 |
57 58
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = 〈 [ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ] ∼ , ( 1 · ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) 〉 ) |
60 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) |
61 |
60
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑎 ) = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) |
62 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) = 〈 [ 𝑏 ] ∼ , ( 1 · 𝑏 ) 〉 ) |
63 |
62
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) = 〈 [ 𝑏 ] ∼ , ( 1 · 𝑏 ) 〉 ) |
64 |
61 63
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑃 ) ( 𝐹 ‘ 𝑏 ) ) = ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ( +g ‘ 𝑃 ) 〈 [ 𝑏 ] ∼ , ( 1 · 𝑏 ) 〉 ) ) |
65 |
52 59 64
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑃 ) ( 𝐹 ‘ 𝑏 ) ) ) |
66 |
5 13 14 15 17 20 24 65
|
isghmd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) ) |