| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rng2idlring.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 3 |  | rng2idlring.j | ⊢ 𝐽  =  ( 𝑅  ↾s  𝐼 ) | 
						
							| 4 |  | rng2idlring.u | ⊢ ( 𝜑  →  𝐽  ∈  Ring ) | 
						
							| 5 |  | rng2idlring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | rng2idlring.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 7 |  | rng2idlring.1 | ⊢  1   =  ( 1r ‘ 𝐽 ) | 
						
							| 8 |  | rngqiprngim.g | ⊢  ∼   =  ( 𝑅  ~QG  𝐼 ) | 
						
							| 9 |  | rngqiprngim.q | ⊢ 𝑄  =  ( 𝑅  /s   ∼  ) | 
						
							| 10 |  | rngqiprngim.c | ⊢ 𝐶  =  ( Base ‘ 𝑄 ) | 
						
							| 11 |  | rngqiprngim.p | ⊢ 𝑃  =  ( 𝑄  ×s  𝐽 ) | 
						
							| 12 |  | rngqiprngim.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  〈 [ 𝑥 ]  ∼  ,  (  1   ·  𝑥 ) 〉 ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 ) | 
						
							| 14 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 15 |  | eqid | ⊢ ( +g ‘ 𝑃 )  =  ( +g ‘ 𝑃 ) | 
						
							| 16 |  | rnggrp | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp ) | 
						
							| 17 | 1 16 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 | rngqiprng | ⊢ ( 𝜑  →  𝑃  ∈  Rng ) | 
						
							| 19 |  | rnggrp | ⊢ ( 𝑃  ∈  Rng  →  𝑃  ∈  Grp ) | 
						
							| 20 | 18 19 | syl | ⊢ ( 𝜑  →  𝑃  ∈  Grp ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimf | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( 𝐶  ×  𝐼 ) ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 | rngqipbas | ⊢ ( 𝜑  →  ( Base ‘ 𝑃 )  =  ( 𝐶  ×  𝐼 ) ) | 
						
							| 23 | 22 | feq3d | ⊢ ( 𝜑  →  ( 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑃 )  ↔  𝐹 : 𝐵 ⟶ ( 𝐶  ×  𝐼 ) ) ) | 
						
							| 24 | 21 23 | mpbird | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( Base ‘ 𝑃 ) ) | 
						
							| 25 |  | ringrng | ⊢ ( 𝐽  ∈  Ring  →  𝐽  ∈  Rng ) | 
						
							| 26 | 4 25 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Rng ) | 
						
							| 27 | 3 26 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝐼 )  ∈  Rng ) | 
						
							| 28 | 1 2 27 | rng2idlnsg | ⊢ ( 𝜑  →  𝐼  ∈  ( NrmSGrp ‘ 𝑅 ) ) | 
						
							| 29 | 28 5 8 9 | ecqusaddd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  [ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ]  ∼   =  ( [ 𝑎 ]  ∼  ( +g ‘ 𝑄 ) [ 𝑏 ]  ∼  ) ) | 
						
							| 30 | 1 2 3 4 5 6 7 | rngqiprngghmlem3 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  (  1   ·  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( (  1   ·  𝑎 ) ( +g ‘ 𝐽 ) (  1   ·  𝑏 ) ) ) | 
						
							| 31 | 29 30 | opeq12d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  〈 [ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ]  ∼  ,  (  1   ·  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) 〉  =  〈 ( [ 𝑎 ]  ∼  ( +g ‘ 𝑄 ) [ 𝑏 ]  ∼  ) ,  ( (  1   ·  𝑎 ) ( +g ‘ 𝐽 ) (  1   ·  𝑏 ) ) 〉 ) | 
						
							| 32 |  | eqid | ⊢ ( Base ‘ 𝑄 )  =  ( Base ‘ 𝑄 ) | 
						
							| 33 |  | eqid | ⊢ ( Base ‘ 𝐽 )  =  ( Base ‘ 𝐽 ) | 
						
							| 34 | 9 | ovexi | ⊢ 𝑄  ∈  V | 
						
							| 35 | 34 | a1i | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑄  ∈  V ) | 
						
							| 36 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝐽  ∈  Ring ) | 
						
							| 37 |  | simpl | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  𝑎  ∈  𝐵 ) | 
						
							| 38 | 8 9 5 32 | quseccl0 | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑎  ∈  𝐵 )  →  [ 𝑎 ]  ∼   ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 39 | 1 37 38 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  [ 𝑎 ]  ∼   ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 40 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  (  1   ·  𝑎 )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 41 | 40 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  (  1   ·  𝑎 )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  𝑏  ∈  𝐵 ) | 
						
							| 43 | 8 9 5 32 | quseccl0 | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑏  ∈  𝐵 )  →  [ 𝑏 ]  ∼   ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 44 | 1 42 43 | syl2an | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  [ 𝑏 ]  ∼   ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 45 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  (  1   ·  𝑏 )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 46 | 45 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  (  1   ·  𝑏 )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 47 | 28 5 8 9 | ecqusaddcl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( [ 𝑎 ]  ∼  ( +g ‘ 𝑄 ) [ 𝑏 ]  ∼  )  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 | rngqiprngghmlem2 | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( (  1   ·  𝑎 ) ( +g ‘ 𝐽 ) (  1   ·  𝑏 ) )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 49 |  | eqid | ⊢ ( +g ‘ 𝑄 )  =  ( +g ‘ 𝑄 ) | 
						
							| 50 |  | eqid | ⊢ ( +g ‘ 𝐽 )  =  ( +g ‘ 𝐽 ) | 
						
							| 51 | 11 32 33 35 36 39 41 44 46 47 48 49 50 15 | xpsadd | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ( +g ‘ 𝑃 ) 〈 [ 𝑏 ]  ∼  ,  (  1   ·  𝑏 ) 〉 )  =  〈 ( [ 𝑎 ]  ∼  ( +g ‘ 𝑄 ) [ 𝑏 ]  ∼  ) ,  ( (  1   ·  𝑎 ) ( +g ‘ 𝐽 ) (  1   ·  𝑏 ) ) 〉 ) | 
						
							| 52 | 31 51 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  〈 [ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ]  ∼  ,  (  1   ·  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) 〉  =  ( 〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ( +g ‘ 𝑃 ) 〈 [ 𝑏 ]  ∼  ,  (  1   ·  𝑏 ) 〉 ) ) | 
						
							| 53 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑅  ∈  Rng ) | 
						
							| 54 | 37 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑎  ∈  𝐵 ) | 
						
							| 55 | 42 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  𝑏  ∈  𝐵 ) | 
						
							| 56 | 5 14 | rngacl | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 57 | 53 54 55 56 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝐵 ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv | ⊢ ( ( 𝜑  ∧  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 )  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  〈 [ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ]  ∼  ,  (  1   ·  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) 〉 ) | 
						
							| 59 | 57 58 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  〈 [ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ]  ∼  ,  (  1   ·  ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) ) 〉 ) | 
						
							| 60 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑎 )  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) | 
						
							| 61 | 60 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐹 ‘ 𝑎 )  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) | 
						
							| 62 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv | ⊢ ( ( 𝜑  ∧  𝑏  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑏 )  =  〈 [ 𝑏 ]  ∼  ,  (  1   ·  𝑏 ) 〉 ) | 
						
							| 63 | 62 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐹 ‘ 𝑏 )  =  〈 [ 𝑏 ]  ∼  ,  (  1   ·  𝑏 ) 〉 ) | 
						
							| 64 | 61 63 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑃 ) ( 𝐹 ‘ 𝑏 ) )  =  ( 〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ( +g ‘ 𝑃 ) 〈 [ 𝑏 ]  ∼  ,  (  1   ·  𝑏 ) 〉 ) ) | 
						
							| 65 | 52 59 64 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑎  ∈  𝐵  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑅 ) 𝑏 ) )  =  ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑃 ) ( 𝐹 ‘ 𝑏 ) ) ) | 
						
							| 66 | 5 13 14 15 17 20 24 65 | isghmd | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  GrpHom  𝑃 ) ) |