| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rng2idlring.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 3 |  | rng2idlring.j | ⊢ 𝐽  =  ( 𝑅  ↾s  𝐼 ) | 
						
							| 4 |  | rng2idlring.u | ⊢ ( 𝜑  →  𝐽  ∈  Ring ) | 
						
							| 5 |  | rng2idlring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | rng2idlring.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 7 |  | rng2idlring.1 | ⊢  1   =  ( 1r ‘ 𝐽 ) | 
						
							| 8 |  | rngqiprngim.g | ⊢  ∼   =  ( 𝑅  ~QG  𝐼 ) | 
						
							| 9 |  | rngqiprngim.q | ⊢ 𝑄  =  ( 𝑅  /s   ∼  ) | 
						
							| 10 |  | rngqiprngim.c | ⊢ 𝐶  =  ( Base ‘ 𝑄 ) | 
						
							| 11 |  | rngqiprngim.p | ⊢ 𝑃  =  ( 𝑄  ×s  𝐽 ) | 
						
							| 12 |  | ringrng | ⊢ ( 𝐽  ∈  Ring  →  𝐽  ∈  Rng ) | 
						
							| 13 | 4 12 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Rng ) | 
						
							| 14 | 3 13 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝐼 )  ∈  Rng ) | 
						
							| 15 | 1 2 14 | rng2idlsubrng | ⊢ ( 𝜑  →  𝐼  ∈  ( SubRng ‘ 𝑅 ) ) | 
						
							| 16 |  | subrngsubg | ⊢ ( 𝐼  ∈  ( SubRng ‘ 𝑅 )  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( 𝜑  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 18 | 8 | oveq2i | ⊢ ( 𝑅  /s   ∼  )  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 19 | 9 18 | eqtri | ⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 20 |  | eqid | ⊢ ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 ) | 
						
							| 21 | 19 20 | qus2idrng | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( 2Ideal ‘ 𝑅 )  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  →  𝑄  ∈  Rng ) | 
						
							| 22 | 1 2 17 21 | syl3anc | ⊢ ( 𝜑  →  𝑄  ∈  Rng ) | 
						
							| 23 | 11 22 13 | xpsrngd | ⊢ ( 𝜑  →  𝑃  ∈  Rng ) |