Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngim.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
11 |
|
rngqiprngim.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
12 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
14 |
3 13
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
15 |
1 2 14
|
rng2idlsubrng |
⊢ ( 𝜑 → 𝐼 ∈ ( SubRng ‘ 𝑅 ) ) |
16 |
|
subrngsubg |
⊢ ( 𝐼 ∈ ( SubRng ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
18 |
8
|
oveq2i |
⊢ ( 𝑅 /s ∼ ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
19 |
9 18
|
eqtri |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
20 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
21 |
19 20
|
qus2idrng |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑄 ∈ Rng ) |
22 |
1 2 17 21
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ∈ Rng ) |
23 |
11 22 13
|
xpsrngd |
⊢ ( 𝜑 → 𝑃 ∈ Rng ) |