Metamath Proof Explorer


Theorem rngqiprngimf

Description: F is a function from (the base set of) a non-unital ring to the product of the (base set C of the) quotient with a two-sided ideal and the (base set I of the) two-sided ideal (because of 2idlbas , ( BaseJ ) = I !) (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
rngqiprngim.q 𝑄 = ( 𝑅 /s )
rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
Assertion rngqiprngimf ( 𝜑𝐹 : 𝐵 ⟶ ( 𝐶 × 𝐼 ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngim.q 𝑄 = ( 𝑅 /s )
10 rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
11 rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
12 rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
13 8 ovexi ∈ V
14 13 ecelqsi ( 𝑥𝐵 → [ 𝑥 ] ∈ ( 𝐵 / ) )
15 14 adantl ( ( 𝜑𝑥𝐵 ) → [ 𝑥 ] ∈ ( 𝐵 / ) )
16 9 a1i ( ( 𝜑𝑥𝐵 ) → 𝑄 = ( 𝑅 /s ) )
17 5 a1i ( ( 𝜑𝑥𝐵 ) → 𝐵 = ( Base ‘ 𝑅 ) )
18 13 a1i ( ( 𝜑𝑥𝐵 ) → ∈ V )
19 1 adantr ( ( 𝜑𝑥𝐵 ) → 𝑅 ∈ Rng )
20 16 17 18 19 qusbas ( ( 𝜑𝑥𝐵 ) → ( 𝐵 / ) = ( Base ‘ 𝑄 ) )
21 20 10 eqtr4di ( ( 𝜑𝑥𝐵 ) → ( 𝐵 / ) = 𝐶 )
22 15 21 eleqtrd ( ( 𝜑𝑥𝐵 ) → [ 𝑥 ] 𝐶 )
23 eqid ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 )
24 2 3 23 2idlbas ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 )
25 2 3 23 2idlelbas ( 𝜑 → ( ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ) )
26 25 simprd ( 𝜑 → ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr𝑅 ) ) )
27 24 26 eqeltrrd ( 𝜑𝐼 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) )
28 ringrng ( 𝐽 ∈ Ring → 𝐽 ∈ Rng )
29 4 28 syl ( 𝜑𝐽 ∈ Rng )
30 3 29 eqeltrrid ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
31 1 2 30 rng2idl0 ( 𝜑 → ( 0g𝑅 ) ∈ 𝐼 )
32 1 27 31 3jca ( 𝜑 → ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ∧ ( 0g𝑅 ) ∈ 𝐼 ) )
33 23 7 ringidcl ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) )
34 4 33 syl ( 𝜑1 ∈ ( Base ‘ 𝐽 ) )
35 34 24 eleqtrd ( 𝜑1𝐼 )
36 35 anim1ci ( ( 𝜑𝑥𝐵 ) → ( 𝑥𝐵1𝐼 ) )
37 eqid ( 0g𝑅 ) = ( 0g𝑅 )
38 eqid ( LIdeal ‘ ( oppr𝑅 ) ) = ( LIdeal ‘ ( oppr𝑅 ) )
39 37 5 6 38 rngridlmcl ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr𝑅 ) ) ∧ ( 0g𝑅 ) ∈ 𝐼 ) ∧ ( 𝑥𝐵1𝐼 ) ) → ( 1 · 𝑥 ) ∈ 𝐼 )
40 32 36 39 syl2an2r ( ( 𝜑𝑥𝐵 ) → ( 1 · 𝑥 ) ∈ 𝐼 )
41 22 40 opelxpd ( ( 𝜑𝑥𝐵 ) → ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ∈ ( 𝐶 × 𝐼 ) )
42 41 12 fmptd ( 𝜑𝐹 : 𝐵 ⟶ ( 𝐶 × 𝐼 ) )