Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngim.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
11 |
|
rngqiprngim.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
12 |
|
rngqiprngim.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) |
13 |
8
|
ovexi |
⊢ ∼ ∈ V |
14 |
13
|
ecelqsi |
⊢ ( 𝑥 ∈ 𝐵 → [ 𝑥 ] ∼ ∈ ( 𝐵 / ∼ ) ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ∼ ∈ ( 𝐵 / ∼ ) ) |
16 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑄 = ( 𝑅 /s ∼ ) ) |
17 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝑅 ) ) |
18 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ∼ ∈ V ) |
19 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 ∈ Rng ) |
20 |
16 17 18 19
|
qusbas |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 / ∼ ) = ( Base ‘ 𝑄 ) ) |
21 |
20 10
|
eqtr4di |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐵 / ∼ ) = 𝐶 ) |
22 |
15 21
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → [ 𝑥 ] ∼ ∈ 𝐶 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
24 |
2 3 23
|
2idlbas |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 ) |
25 |
2 3 23
|
2idlelbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ 𝑅 ) ∧ ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) |
26 |
25
|
simprd |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
27 |
24 26
|
eqeltrrd |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) |
28 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
29 |
4 28
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
30 |
3 29
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
31 |
1 2 30
|
rng2idl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
32 |
1 27 31
|
3jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ) ) |
33 |
23 7
|
ringidcl |
⊢ ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) ) |
34 |
4 33
|
syl |
⊢ ( 𝜑 → 1 ∈ ( Base ‘ 𝐽 ) ) |
35 |
34 24
|
eleqtrd |
⊢ ( 𝜑 → 1 ∈ 𝐼 ) |
36 |
35
|
anim1ci |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 ∧ 1 ∈ 𝐼 ) ) |
37 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
38 |
|
eqid |
⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) = ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) |
39 |
37 5 6 38
|
rngridlmcl |
⊢ ( ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 1 ∈ 𝐼 ) ) → ( 1 · 𝑥 ) ∈ 𝐼 ) |
40 |
32 36 39
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 1 · 𝑥 ) ∈ 𝐼 ) |
41 |
22 40
|
opelxpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ∈ ( 𝐶 × 𝐼 ) ) |
42 |
41 12
|
fmptd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( 𝐶 × 𝐼 ) ) |