| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rng2idlring.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 3 |  | rng2idlring.j | ⊢ 𝐽  =  ( 𝑅  ↾s  𝐼 ) | 
						
							| 4 |  | rng2idlring.u | ⊢ ( 𝜑  →  𝐽  ∈  Ring ) | 
						
							| 5 |  | rng2idlring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | rng2idlring.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 7 |  | rng2idlring.1 | ⊢  1   =  ( 1r ‘ 𝐽 ) | 
						
							| 8 |  | rngqiprngim.g | ⊢  ∼   =  ( 𝑅  ~QG  𝐼 ) | 
						
							| 9 |  | rngqiprngim.q | ⊢ 𝑄  =  ( 𝑅  /s   ∼  ) | 
						
							| 10 |  | rngqiprngim.c | ⊢ 𝐶  =  ( Base ‘ 𝑄 ) | 
						
							| 11 |  | rngqiprngim.p | ⊢ 𝑃  =  ( 𝑄  ×s  𝐽 ) | 
						
							| 12 |  | rngqiprngim.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  〈 [ 𝑥 ]  ∼  ,  (  1   ·  𝑥 ) 〉 ) | 
						
							| 13 | 8 | ovexi | ⊢  ∼   ∈  V | 
						
							| 14 | 13 | ecelqsi | ⊢ ( 𝑥  ∈  𝐵  →  [ 𝑥 ]  ∼   ∈  ( 𝐵  /   ∼  ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  [ 𝑥 ]  ∼   ∈  ( 𝐵  /   ∼  ) ) | 
						
							| 16 | 9 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑄  =  ( 𝑅  /s   ∼  ) ) | 
						
							| 17 | 5 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝐵  =  ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 13 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →   ∼   ∈  V ) | 
						
							| 19 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  𝑅  ∈  Rng ) | 
						
							| 20 | 16 17 18 19 | qusbas | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝐵  /   ∼  )  =  ( Base ‘ 𝑄 ) ) | 
						
							| 21 | 20 10 | eqtr4di | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝐵  /   ∼  )  =  𝐶 ) | 
						
							| 22 | 15 21 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  [ 𝑥 ]  ∼   ∈  𝐶 ) | 
						
							| 23 |  | eqid | ⊢ ( Base ‘ 𝐽 )  =  ( Base ‘ 𝐽 ) | 
						
							| 24 | 2 3 23 | 2idlbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐽 )  =  𝐼 ) | 
						
							| 25 | 2 3 23 | 2idlelbas | ⊢ ( 𝜑  →  ( ( Base ‘ 𝐽 )  ∈  ( LIdeal ‘ 𝑅 )  ∧  ( Base ‘ 𝐽 )  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) ) | 
						
							| 26 | 25 | simprd | ⊢ ( 𝜑  →  ( Base ‘ 𝐽 )  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) | 
						
							| 27 | 24 26 | eqeltrrd | ⊢ ( 𝜑  →  𝐼  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) ) | 
						
							| 28 |  | ringrng | ⊢ ( 𝐽  ∈  Ring  →  𝐽  ∈  Rng ) | 
						
							| 29 | 4 28 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Rng ) | 
						
							| 30 | 3 29 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝐼 )  ∈  Rng ) | 
						
							| 31 | 1 2 30 | rng2idl0 | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  ∈  𝐼 ) | 
						
							| 32 | 1 27 31 | 3jca | ⊢ ( 𝜑  →  ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) )  ∧  ( 0g ‘ 𝑅 )  ∈  𝐼 ) ) | 
						
							| 33 | 23 7 | ringidcl | ⊢ ( 𝐽  ∈  Ring  →   1   ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 34 | 4 33 | syl | ⊢ ( 𝜑  →   1   ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 35 | 34 24 | eleqtrd | ⊢ ( 𝜑  →   1   ∈  𝐼 ) | 
						
							| 36 | 35 | anim1ci | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  ∈  𝐵  ∧   1   ∈  𝐼 ) ) | 
						
							| 37 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 38 |  | eqid | ⊢ ( LIdeal ‘ ( oppr ‘ 𝑅 ) )  =  ( LIdeal ‘ ( oppr ‘ 𝑅 ) ) | 
						
							| 39 | 37 5 6 38 | rngridlmcl | ⊢ ( ( ( 𝑅  ∈  Rng  ∧  𝐼  ∈  ( LIdeal ‘ ( oppr ‘ 𝑅 ) )  ∧  ( 0g ‘ 𝑅 )  ∈  𝐼 )  ∧  ( 𝑥  ∈  𝐵  ∧   1   ∈  𝐼 ) )  →  (  1   ·  𝑥 )  ∈  𝐼 ) | 
						
							| 40 | 32 36 39 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  (  1   ·  𝑥 )  ∈  𝐼 ) | 
						
							| 41 | 22 40 | opelxpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  〈 [ 𝑥 ]  ∼  ,  (  1   ·  𝑥 ) 〉  ∈  ( 𝐶  ×  𝐼 ) ) | 
						
							| 42 | 41 12 | fmptd | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( 𝐶  ×  𝐼 ) ) |