| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rng2idlring.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 3 |  | rng2idlring.j | ⊢ 𝐽  =  ( 𝑅  ↾s  𝐼 ) | 
						
							| 4 |  | rng2idlring.u | ⊢ ( 𝜑  →  𝐽  ∈  Ring ) | 
						
							| 5 |  | rng2idlring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | rng2idlring.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 7 |  | rng2idlring.1 | ⊢  1   =  ( 1r ‘ 𝐽 ) | 
						
							| 8 |  | rngqiprngim.g | ⊢  ∼   =  ( 𝑅  ~QG  𝐼 ) | 
						
							| 9 |  | rngqiprngim.q | ⊢ 𝑄  =  ( 𝑅  /s   ∼  ) | 
						
							| 10 |  | rngqiprngim.c | ⊢ 𝐶  =  ( Base ‘ 𝑄 ) | 
						
							| 11 |  | rngqiprngim.p | ⊢ 𝑃  =  ( 𝑄  ×s  𝐽 ) | 
						
							| 12 |  | rngqiprngim.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  〈 [ 𝑥 ]  ∼  ,  (  1   ·  𝑥 ) 〉 ) | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  𝐹  =  ( 𝑥  ∈  𝐵  ↦  〈 [ 𝑥 ]  ∼  ,  (  1   ·  𝑥 ) 〉 ) ) | 
						
							| 14 |  | eceq1 | ⊢ ( 𝑥  =  𝐴  →  [ 𝑥 ]  ∼   =  [ 𝐴 ]  ∼  ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑥  =  𝐴  →  (  1   ·  𝑥 )  =  (  1   ·  𝐴 ) ) | 
						
							| 16 | 14 15 | opeq12d | ⊢ ( 𝑥  =  𝐴  →  〈 [ 𝑥 ]  ∼  ,  (  1   ·  𝑥 ) 〉  =  〈 [ 𝐴 ]  ∼  ,  (  1   ·  𝐴 ) 〉 ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  =  𝐴 )  →  〈 [ 𝑥 ]  ∼  ,  (  1   ·  𝑥 ) 〉  =  〈 [ 𝐴 ]  ∼  ,  (  1   ·  𝐴 ) 〉 ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  𝐴  ∈  𝐵 ) | 
						
							| 19 |  | opex | ⊢ 〈 [ 𝐴 ]  ∼  ,  (  1   ·  𝐴 ) 〉  ∈  V | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  〈 [ 𝐴 ]  ∼  ,  (  1   ·  𝐴 ) 〉  ∈  V ) | 
						
							| 21 | 13 17 18 20 | fvmptd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( 𝐹 ‘ 𝐴 )  =  〈 [ 𝐴 ]  ∼  ,  (  1   ·  𝐴 ) 〉 ) |