| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
| 4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
| 5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
| 8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
| 9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
| 10 |
|
rngqiprngim.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
| 11 |
|
rngqiprngim.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
| 12 |
|
rngqiprngim.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) |
| 13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → 𝐹 = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) ) |
| 14 |
|
eceq1 |
⊢ ( 𝑥 = 𝐴 → [ 𝑥 ] ∼ = [ 𝐴 ] ∼ ) |
| 15 |
|
oveq2 |
⊢ ( 𝑥 = 𝐴 → ( 1 · 𝑥 ) = ( 1 · 𝐴 ) ) |
| 16 |
14 15
|
opeq12d |
⊢ ( 𝑥 = 𝐴 → 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 = 〈 [ 𝐴 ] ∼ , ( 1 · 𝐴 ) 〉 ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) ∧ 𝑥 = 𝐴 ) → 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 = 〈 [ 𝐴 ] ∼ , ( 1 · 𝐴 ) 〉 ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
| 19 |
|
opex |
⊢ 〈 [ 𝐴 ] ∼ , ( 1 · 𝐴 ) 〉 ∈ V |
| 20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → 〈 [ 𝐴 ] ∼ , ( 1 · 𝐴 ) 〉 ∈ V ) |
| 21 |
13 17 18 20
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) = 〈 [ 𝐴 ] ∼ , ( 1 · 𝐴 ) 〉 ) |