Metamath Proof Explorer


Theorem rngqiprngimfv

Description: The value of the function F at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
rngqiprngim.q 𝑄 = ( 𝑅 /s )
rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
Assertion rngqiprngimfv ( ( 𝜑𝐴𝐵 ) → ( 𝐹𝐴 ) = ⟨ [ 𝐴 ] , ( 1 · 𝐴 ) ⟩ )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngim.q 𝑄 = ( 𝑅 /s )
10 rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
11 rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
12 rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
13 12 a1i ( ( 𝜑𝐴𝐵 ) → 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ) )
14 eceq1 ( 𝑥 = 𝐴 → [ 𝑥 ] = [ 𝐴 ] )
15 oveq2 ( 𝑥 = 𝐴 → ( 1 · 𝑥 ) = ( 1 · 𝐴 ) )
16 14 15 opeq12d ( 𝑥 = 𝐴 → ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ = ⟨ [ 𝐴 ] , ( 1 · 𝐴 ) ⟩ )
17 16 adantl ( ( ( 𝜑𝐴𝐵 ) ∧ 𝑥 = 𝐴 ) → ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ = ⟨ [ 𝐴 ] , ( 1 · 𝐴 ) ⟩ )
18 simpr ( ( 𝜑𝐴𝐵 ) → 𝐴𝐵 )
19 opex ⟨ [ 𝐴 ] , ( 1 · 𝐴 ) ⟩ ∈ V
20 19 a1i ( ( 𝜑𝐴𝐵 ) → ⟨ [ 𝐴 ] , ( 1 · 𝐴 ) ⟩ ∈ V )
21 13 17 18 20 fvmptd ( ( 𝜑𝐴𝐵 ) → ( 𝐹𝐴 ) = ⟨ [ 𝐴 ] , ( 1 · 𝐴 ) ⟩ )