Metamath Proof Explorer


Theorem rngqiprngimfv

Description: The value of the function F at an element of (the base set of) a non-unital ring. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r
|- ( ph -> R e. Rng )
rng2idlring.i
|- ( ph -> I e. ( 2Ideal ` R ) )
rng2idlring.j
|- J = ( R |`s I )
rng2idlring.u
|- ( ph -> J e. Ring )
rng2idlring.b
|- B = ( Base ` R )
rng2idlring.t
|- .x. = ( .r ` R )
rng2idlring.1
|- .1. = ( 1r ` J )
rngqiprngim.g
|- .~ = ( R ~QG I )
rngqiprngim.q
|- Q = ( R /s .~ )
rngqiprngim.c
|- C = ( Base ` Q )
rngqiprngim.p
|- P = ( Q Xs. J )
rngqiprngim.f
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. )
Assertion rngqiprngimfv
|- ( ( ph /\ A e. B ) -> ( F ` A ) = <. [ A ] .~ , ( .1. .x. A ) >. )

Proof

Step Hyp Ref Expression
1 rng2idlring.r
 |-  ( ph -> R e. Rng )
2 rng2idlring.i
 |-  ( ph -> I e. ( 2Ideal ` R ) )
3 rng2idlring.j
 |-  J = ( R |`s I )
4 rng2idlring.u
 |-  ( ph -> J e. Ring )
5 rng2idlring.b
 |-  B = ( Base ` R )
6 rng2idlring.t
 |-  .x. = ( .r ` R )
7 rng2idlring.1
 |-  .1. = ( 1r ` J )
8 rngqiprngim.g
 |-  .~ = ( R ~QG I )
9 rngqiprngim.q
 |-  Q = ( R /s .~ )
10 rngqiprngim.c
 |-  C = ( Base ` Q )
11 rngqiprngim.p
 |-  P = ( Q Xs. J )
12 rngqiprngim.f
 |-  F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. )
13 12 a1i
 |-  ( ( ph /\ A e. B ) -> F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) )
14 eceq1
 |-  ( x = A -> [ x ] .~ = [ A ] .~ )
15 oveq2
 |-  ( x = A -> ( .1. .x. x ) = ( .1. .x. A ) )
16 14 15 opeq12d
 |-  ( x = A -> <. [ x ] .~ , ( .1. .x. x ) >. = <. [ A ] .~ , ( .1. .x. A ) >. )
17 16 adantl
 |-  ( ( ( ph /\ A e. B ) /\ x = A ) -> <. [ x ] .~ , ( .1. .x. x ) >. = <. [ A ] .~ , ( .1. .x. A ) >. )
18 simpr
 |-  ( ( ph /\ A e. B ) -> A e. B )
19 opex
 |-  <. [ A ] .~ , ( .1. .x. A ) >. e. _V
20 19 a1i
 |-  ( ( ph /\ A e. B ) -> <. [ A ] .~ , ( .1. .x. A ) >. e. _V )
21 13 17 18 20 fvmptd
 |-  ( ( ph /\ A e. B ) -> ( F ` A ) = <. [ A ] .~ , ( .1. .x. A ) >. )