Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
12 |
|
rngqiprngim.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
13 |
12
|
a1i |
|- ( ( ph /\ A e. B ) -> F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ) |
14 |
|
eceq1 |
|- ( x = A -> [ x ] .~ = [ A ] .~ ) |
15 |
|
oveq2 |
|- ( x = A -> ( .1. .x. x ) = ( .1. .x. A ) ) |
16 |
14 15
|
opeq12d |
|- ( x = A -> <. [ x ] .~ , ( .1. .x. x ) >. = <. [ A ] .~ , ( .1. .x. A ) >. ) |
17 |
16
|
adantl |
|- ( ( ( ph /\ A e. B ) /\ x = A ) -> <. [ x ] .~ , ( .1. .x. x ) >. = <. [ A ] .~ , ( .1. .x. A ) >. ) |
18 |
|
simpr |
|- ( ( ph /\ A e. B ) -> A e. B ) |
19 |
|
opex |
|- <. [ A ] .~ , ( .1. .x. A ) >. e. _V |
20 |
19
|
a1i |
|- ( ( ph /\ A e. B ) -> <. [ A ] .~ , ( .1. .x. A ) >. e. _V ) |
21 |
13 17 18 20
|
fvmptd |
|- ( ( ph /\ A e. B ) -> ( F ` A ) = <. [ A ] .~ , ( .1. .x. A ) >. ) |