| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
| 4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
| 6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
| 9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
| 10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
| 11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
| 12 |
|
rngqiprngim.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
| 13 |
12
|
a1i |
|- ( ( ph /\ A e. B ) -> F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ) |
| 14 |
|
eceq1 |
|- ( x = A -> [ x ] .~ = [ A ] .~ ) |
| 15 |
|
oveq2 |
|- ( x = A -> ( .1. .x. x ) = ( .1. .x. A ) ) |
| 16 |
14 15
|
opeq12d |
|- ( x = A -> <. [ x ] .~ , ( .1. .x. x ) >. = <. [ A ] .~ , ( .1. .x. A ) >. ) |
| 17 |
16
|
adantl |
|- ( ( ( ph /\ A e. B ) /\ x = A ) -> <. [ x ] .~ , ( .1. .x. x ) >. = <. [ A ] .~ , ( .1. .x. A ) >. ) |
| 18 |
|
simpr |
|- ( ( ph /\ A e. B ) -> A e. B ) |
| 19 |
|
opex |
|- <. [ A ] .~ , ( .1. .x. A ) >. e. _V |
| 20 |
19
|
a1i |
|- ( ( ph /\ A e. B ) -> <. [ A ] .~ , ( .1. .x. A ) >. e. _V ) |
| 21 |
13 17 18 20
|
fvmptd |
|- ( ( ph /\ A e. B ) -> ( F ` A ) = <. [ A ] .~ , ( .1. .x. A ) >. ) |