| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r |  |-  ( ph -> R e. Rng ) | 
						
							| 2 |  | rng2idlring.i |  |-  ( ph -> I e. ( 2Ideal ` R ) ) | 
						
							| 3 |  | rng2idlring.j |  |-  J = ( R |`s I ) | 
						
							| 4 |  | rng2idlring.u |  |-  ( ph -> J e. Ring ) | 
						
							| 5 |  | rng2idlring.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | rng2idlring.t |  |-  .x. = ( .r ` R ) | 
						
							| 7 |  | rng2idlring.1 |  |-  .1. = ( 1r ` J ) | 
						
							| 8 |  | rngqiprngim.g |  |-  .~ = ( R ~QG I ) | 
						
							| 9 |  | rngqiprngim.q |  |-  Q = ( R /s .~ ) | 
						
							| 10 |  | rngqiprngim.c |  |-  C = ( Base ` Q ) | 
						
							| 11 |  | rngqiprngim.p |  |-  P = ( Q Xs. J ) | 
						
							| 12 |  | rngqiprngim.f |  |-  F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) | 
						
							| 13 | 12 | a1i |  |-  ( ( ph /\ A e. B ) -> F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) ) | 
						
							| 14 |  | eceq1 |  |-  ( x = A -> [ x ] .~ = [ A ] .~ ) | 
						
							| 15 |  | oveq2 |  |-  ( x = A -> ( .1. .x. x ) = ( .1. .x. A ) ) | 
						
							| 16 | 14 15 | opeq12d |  |-  ( x = A -> <. [ x ] .~ , ( .1. .x. x ) >. = <. [ A ] .~ , ( .1. .x. A ) >. ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( ph /\ A e. B ) /\ x = A ) -> <. [ x ] .~ , ( .1. .x. x ) >. = <. [ A ] .~ , ( .1. .x. A ) >. ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ A e. B ) -> A e. B ) | 
						
							| 19 |  | opex |  |-  <. [ A ] .~ , ( .1. .x. A ) >. e. _V | 
						
							| 20 | 19 | a1i |  |-  ( ( ph /\ A e. B ) -> <. [ A ] .~ , ( .1. .x. A ) >. e. _V ) | 
						
							| 21 | 13 17 18 20 | fvmptd |  |-  ( ( ph /\ A e. B ) -> ( F ` A ) = <. [ A ] .~ , ( .1. .x. A ) >. ) |