| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r |  |-  ( ph -> R e. Rng ) | 
						
							| 2 |  | rng2idlring.i |  |-  ( ph -> I e. ( 2Ideal ` R ) ) | 
						
							| 3 |  | rng2idlring.j |  |-  J = ( R |`s I ) | 
						
							| 4 |  | rng2idlring.u |  |-  ( ph -> J e. Ring ) | 
						
							| 5 |  | rng2idlring.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | rng2idlring.t |  |-  .x. = ( .r ` R ) | 
						
							| 7 |  | rng2idlring.1 |  |-  .1. = ( 1r ` J ) | 
						
							| 8 |  | rngqiprngim.g |  |-  .~ = ( R ~QG I ) | 
						
							| 9 |  | rngqiprngim.q |  |-  Q = ( R /s .~ ) | 
						
							| 10 |  | rngqiprngim.c |  |-  C = ( Base ` Q ) | 
						
							| 11 |  | rngqiprngim.p |  |-  P = ( Q Xs. J ) | 
						
							| 12 |  | rngqiprngim.f |  |-  F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) | 
						
							| 13 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 14 |  | eqid |  |-  ( +g ` R ) = ( +g ` R ) | 
						
							| 15 |  | eqid |  |-  ( +g ` P ) = ( +g ` P ) | 
						
							| 16 |  | rnggrp |  |-  ( R e. Rng -> R e. Grp ) | 
						
							| 17 | 1 16 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 18 | 1 2 3 4 5 6 7 8 9 10 11 | rngqiprng |  |-  ( ph -> P e. Rng ) | 
						
							| 19 |  | rnggrp |  |-  ( P e. Rng -> P e. Grp ) | 
						
							| 20 | 18 19 | syl |  |-  ( ph -> P e. Grp ) | 
						
							| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimf |  |-  ( ph -> F : B --> ( C X. I ) ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 10 11 | rngqipbas |  |-  ( ph -> ( Base ` P ) = ( C X. I ) ) | 
						
							| 23 | 22 | feq3d |  |-  ( ph -> ( F : B --> ( Base ` P ) <-> F : B --> ( C X. I ) ) ) | 
						
							| 24 | 21 23 | mpbird |  |-  ( ph -> F : B --> ( Base ` P ) ) | 
						
							| 25 |  | ringrng |  |-  ( J e. Ring -> J e. Rng ) | 
						
							| 26 | 4 25 | syl |  |-  ( ph -> J e. Rng ) | 
						
							| 27 | 3 26 | eqeltrrid |  |-  ( ph -> ( R |`s I ) e. Rng ) | 
						
							| 28 | 1 2 27 | rng2idlnsg |  |-  ( ph -> I e. ( NrmSGrp ` R ) ) | 
						
							| 29 | 28 5 8 9 | ecqusaddd |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ ( a ( +g ` R ) b ) ] .~ = ( [ a ] .~ ( +g ` Q ) [ b ] .~ ) ) | 
						
							| 30 | 1 2 3 4 5 6 7 | rngqiprngghmlem3 |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .1. .x. ( a ( +g ` R ) b ) ) = ( ( .1. .x. a ) ( +g ` J ) ( .1. .x. b ) ) ) | 
						
							| 31 | 29 30 | opeq12d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> <. [ ( a ( +g ` R ) b ) ] .~ , ( .1. .x. ( a ( +g ` R ) b ) ) >. = <. ( [ a ] .~ ( +g ` Q ) [ b ] .~ ) , ( ( .1. .x. a ) ( +g ` J ) ( .1. .x. b ) ) >. ) | 
						
							| 32 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 33 |  | eqid |  |-  ( Base ` J ) = ( Base ` J ) | 
						
							| 34 | 9 | ovexi |  |-  Q e. _V | 
						
							| 35 | 34 | a1i |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> Q e. _V ) | 
						
							| 36 | 4 | adantr |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> J e. Ring ) | 
						
							| 37 |  | simpl |  |-  ( ( a e. B /\ b e. B ) -> a e. B ) | 
						
							| 38 | 8 9 5 32 | quseccl0 |  |-  ( ( R e. Rng /\ a e. B ) -> [ a ] .~ e. ( Base ` Q ) ) | 
						
							| 39 | 1 37 38 | syl2an |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ a ] .~ e. ( Base ` Q ) ) | 
						
							| 40 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 |  |-  ( ( ph /\ a e. B ) -> ( .1. .x. a ) e. ( Base ` J ) ) | 
						
							| 41 | 40 | adantrr |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .1. .x. a ) e. ( Base ` J ) ) | 
						
							| 42 |  | simpr |  |-  ( ( a e. B /\ b e. B ) -> b e. B ) | 
						
							| 43 | 8 9 5 32 | quseccl0 |  |-  ( ( R e. Rng /\ b e. B ) -> [ b ] .~ e. ( Base ` Q ) ) | 
						
							| 44 | 1 42 43 | syl2an |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ b ] .~ e. ( Base ` Q ) ) | 
						
							| 45 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 |  |-  ( ( ph /\ b e. B ) -> ( .1. .x. b ) e. ( Base ` J ) ) | 
						
							| 46 | 45 | adantrl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .1. .x. b ) e. ( Base ` J ) ) | 
						
							| 47 | 28 5 8 9 | ecqusaddcl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( [ a ] .~ ( +g ` Q ) [ b ] .~ ) e. ( Base ` Q ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 | rngqiprngghmlem2 |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( .1. .x. a ) ( +g ` J ) ( .1. .x. b ) ) e. ( Base ` J ) ) | 
						
							| 49 |  | eqid |  |-  ( +g ` Q ) = ( +g ` Q ) | 
						
							| 50 |  | eqid |  |-  ( +g ` J ) = ( +g ` J ) | 
						
							| 51 | 11 32 33 35 36 39 41 44 46 47 48 49 50 15 | xpsadd |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( <. [ a ] .~ , ( .1. .x. a ) >. ( +g ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) = <. ( [ a ] .~ ( +g ` Q ) [ b ] .~ ) , ( ( .1. .x. a ) ( +g ` J ) ( .1. .x. b ) ) >. ) | 
						
							| 52 | 31 51 | eqtr4d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> <. [ ( a ( +g ` R ) b ) ] .~ , ( .1. .x. ( a ( +g ` R ) b ) ) >. = ( <. [ a ] .~ , ( .1. .x. a ) >. ( +g ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) ) | 
						
							| 53 | 1 | adantr |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> R e. Rng ) | 
						
							| 54 | 37 | adantl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. B ) | 
						
							| 55 | 42 | adantl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. B ) | 
						
							| 56 | 5 14 | rngacl |  |-  ( ( R e. Rng /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) | 
						
							| 57 | 53 54 55 56 | syl3anc |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` R ) b ) e. B ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv |  |-  ( ( ph /\ ( a ( +g ` R ) b ) e. B ) -> ( F ` ( a ( +g ` R ) b ) ) = <. [ ( a ( +g ` R ) b ) ] .~ , ( .1. .x. ( a ( +g ` R ) b ) ) >. ) | 
						
							| 59 | 57 58 | syldan |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( +g ` R ) b ) ) = <. [ ( a ( +g ` R ) b ) ] .~ , ( .1. .x. ( a ( +g ` R ) b ) ) >. ) | 
						
							| 60 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv |  |-  ( ( ph /\ a e. B ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) | 
						
							| 61 | 60 | adantrr |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) | 
						
							| 62 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv |  |-  ( ( ph /\ b e. B ) -> ( F ` b ) = <. [ b ] .~ , ( .1. .x. b ) >. ) | 
						
							| 63 | 62 | adantrl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` b ) = <. [ b ] .~ , ( .1. .x. b ) >. ) | 
						
							| 64 | 61 63 | oveq12d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( F ` a ) ( +g ` P ) ( F ` b ) ) = ( <. [ a ] .~ , ( .1. .x. a ) >. ( +g ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) ) | 
						
							| 65 | 52 59 64 | 3eqtr4d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` P ) ( F ` b ) ) ) | 
						
							| 66 | 5 13 14 15 17 20 24 65 | isghmd |  |-  ( ph -> F e. ( R GrpHom P ) ) |