Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
12 |
|
rngqiprngim.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
13 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
14 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
15 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
16 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
17 |
1 16
|
syl |
|- ( ph -> R e. Grp ) |
18 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprng |
|- ( ph -> P e. Rng ) |
19 |
|
rnggrp |
|- ( P e. Rng -> P e. Grp ) |
20 |
18 19
|
syl |
|- ( ph -> P e. Grp ) |
21 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimf |
|- ( ph -> F : B --> ( C X. I ) ) |
22 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqipbas |
|- ( ph -> ( Base ` P ) = ( C X. I ) ) |
23 |
22
|
feq3d |
|- ( ph -> ( F : B --> ( Base ` P ) <-> F : B --> ( C X. I ) ) ) |
24 |
21 23
|
mpbird |
|- ( ph -> F : B --> ( Base ` P ) ) |
25 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
26 |
4 25
|
syl |
|- ( ph -> J e. Rng ) |
27 |
3 26
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
28 |
1 2 27
|
rng2idlnsg |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
29 |
28 5 8 9
|
ecqusaddd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ ( a ( +g ` R ) b ) ] .~ = ( [ a ] .~ ( +g ` Q ) [ b ] .~ ) ) |
30 |
1 2 3 4 5 6 7
|
rngqiprngghmlem3 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .1. .x. ( a ( +g ` R ) b ) ) = ( ( .1. .x. a ) ( +g ` J ) ( .1. .x. b ) ) ) |
31 |
29 30
|
opeq12d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> <. [ ( a ( +g ` R ) b ) ] .~ , ( .1. .x. ( a ( +g ` R ) b ) ) >. = <. ( [ a ] .~ ( +g ` Q ) [ b ] .~ ) , ( ( .1. .x. a ) ( +g ` J ) ( .1. .x. b ) ) >. ) |
32 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
33 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
34 |
9
|
ovexi |
|- Q e. _V |
35 |
34
|
a1i |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> Q e. _V ) |
36 |
4
|
adantr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> J e. Ring ) |
37 |
|
simpl |
|- ( ( a e. B /\ b e. B ) -> a e. B ) |
38 |
8 9 5 32
|
quseccl0 |
|- ( ( R e. Rng /\ a e. B ) -> [ a ] .~ e. ( Base ` Q ) ) |
39 |
1 37 38
|
syl2an |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ a ] .~ e. ( Base ` Q ) ) |
40 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|- ( ( ph /\ a e. B ) -> ( .1. .x. a ) e. ( Base ` J ) ) |
41 |
40
|
adantrr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .1. .x. a ) e. ( Base ` J ) ) |
42 |
|
simpr |
|- ( ( a e. B /\ b e. B ) -> b e. B ) |
43 |
8 9 5 32
|
quseccl0 |
|- ( ( R e. Rng /\ b e. B ) -> [ b ] .~ e. ( Base ` Q ) ) |
44 |
1 42 43
|
syl2an |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ b ] .~ e. ( Base ` Q ) ) |
45 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|- ( ( ph /\ b e. B ) -> ( .1. .x. b ) e. ( Base ` J ) ) |
46 |
45
|
adantrl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .1. .x. b ) e. ( Base ` J ) ) |
47 |
28 5 8 9
|
ecqusaddcl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( [ a ] .~ ( +g ` Q ) [ b ] .~ ) e. ( Base ` Q ) ) |
48 |
1 2 3 4 5 6 7
|
rngqiprngghmlem2 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( .1. .x. a ) ( +g ` J ) ( .1. .x. b ) ) e. ( Base ` J ) ) |
49 |
|
eqid |
|- ( +g ` Q ) = ( +g ` Q ) |
50 |
|
eqid |
|- ( +g ` J ) = ( +g ` J ) |
51 |
11 32 33 35 36 39 41 44 46 47 48 49 50 15
|
xpsadd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( <. [ a ] .~ , ( .1. .x. a ) >. ( +g ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) = <. ( [ a ] .~ ( +g ` Q ) [ b ] .~ ) , ( ( .1. .x. a ) ( +g ` J ) ( .1. .x. b ) ) >. ) |
52 |
31 51
|
eqtr4d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> <. [ ( a ( +g ` R ) b ) ] .~ , ( .1. .x. ( a ( +g ` R ) b ) ) >. = ( <. [ a ] .~ , ( .1. .x. a ) >. ( +g ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) ) |
53 |
1
|
adantr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> R e. Rng ) |
54 |
37
|
adantl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> a e. B ) |
55 |
42
|
adantl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> b e. B ) |
56 |
5 14
|
rngacl |
|- ( ( R e. Rng /\ a e. B /\ b e. B ) -> ( a ( +g ` R ) b ) e. B ) |
57 |
53 54 55 56
|
syl3anc |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a ( +g ` R ) b ) e. B ) |
58 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|- ( ( ph /\ ( a ( +g ` R ) b ) e. B ) -> ( F ` ( a ( +g ` R ) b ) ) = <. [ ( a ( +g ` R ) b ) ] .~ , ( .1. .x. ( a ( +g ` R ) b ) ) >. ) |
59 |
57 58
|
syldan |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( +g ` R ) b ) ) = <. [ ( a ( +g ` R ) b ) ] .~ , ( .1. .x. ( a ( +g ` R ) b ) ) >. ) |
60 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|- ( ( ph /\ a e. B ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) |
61 |
60
|
adantrr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) |
62 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|- ( ( ph /\ b e. B ) -> ( F ` b ) = <. [ b ] .~ , ( .1. .x. b ) >. ) |
63 |
62
|
adantrl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` b ) = <. [ b ] .~ , ( .1. .x. b ) >. ) |
64 |
61 63
|
oveq12d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( F ` a ) ( +g ` P ) ( F ` b ) ) = ( <. [ a ] .~ , ( .1. .x. a ) >. ( +g ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) ) |
65 |
52 59 64
|
3eqtr4d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a ( +g ` R ) b ) ) = ( ( F ` a ) ( +g ` P ) ( F ` b ) ) ) |
66 |
5 13 14 15 17 20 24 65
|
isghmd |
|- ( ph -> F e. ( R GrpHom P ) ) |