Metamath Proof Explorer


Theorem rngqiprngghm

Description: F is a homomorphism of the additive groups of non-unital rings. (Contributed by AV, 24-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
rngqiprngim.c C = Base Q
rngqiprngim.p P = Q × 𝑠 J
rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
Assertion rngqiprngghm φ F R GrpHom P

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 rngqiprngim.c C = Base Q
11 rngqiprngim.p P = Q × 𝑠 J
12 rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
13 eqid Base P = Base P
14 eqid + R = + R
15 eqid + P = + P
16 rnggrp R Rng R Grp
17 1 16 syl φ R Grp
18 1 2 3 4 5 6 7 8 9 10 11 rngqiprng φ P Rng
19 rnggrp P Rng P Grp
20 18 19 syl φ P Grp
21 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimf φ F : B C × I
22 1 2 3 4 5 6 7 8 9 10 11 rngqipbas φ Base P = C × I
23 22 feq3d φ F : B Base P F : B C × I
24 21 23 mpbird φ F : B Base P
25 ringrng J Ring J Rng
26 4 25 syl φ J Rng
27 3 26 eqeltrrid φ R 𝑠 I Rng
28 1 2 27 rng2idlnsg φ I NrmSGrp R
29 28 5 8 9 ecqusaddd φ a B b B a + R b ˙ = a ˙ + Q b ˙
30 1 2 3 4 5 6 7 rngqiprngghmlem3 φ a B b B 1 ˙ · ˙ a + R b = 1 ˙ · ˙ a + J 1 ˙ · ˙ b
31 29 30 opeq12d φ a B b B a + R b ˙ 1 ˙ · ˙ a + R b = a ˙ + Q b ˙ 1 ˙ · ˙ a + J 1 ˙ · ˙ b
32 eqid Base Q = Base Q
33 eqid Base J = Base J
34 9 ovexi Q V
35 34 a1i φ a B b B Q V
36 4 adantr φ a B b B J Ring
37 simpl a B b B a B
38 8 9 5 32 quseccl0 R Rng a B a ˙ Base Q
39 1 37 38 syl2an φ a B b B a ˙ Base Q
40 1 2 3 4 5 6 7 rngqiprngghmlem1 φ a B 1 ˙ · ˙ a Base J
41 40 adantrr φ a B b B 1 ˙ · ˙ a Base J
42 simpr a B b B b B
43 8 9 5 32 quseccl0 R Rng b B b ˙ Base Q
44 1 42 43 syl2an φ a B b B b ˙ Base Q
45 1 2 3 4 5 6 7 rngqiprngghmlem1 φ b B 1 ˙ · ˙ b Base J
46 45 adantrl φ a B b B 1 ˙ · ˙ b Base J
47 28 5 8 9 ecqusaddcl φ a B b B a ˙ + Q b ˙ Base Q
48 1 2 3 4 5 6 7 rngqiprngghmlem2 φ a B b B 1 ˙ · ˙ a + J 1 ˙ · ˙ b Base J
49 eqid + Q = + Q
50 eqid + J = + J
51 11 32 33 35 36 39 41 44 46 47 48 49 50 15 xpsadd φ a B b B a ˙ 1 ˙ · ˙ a + P b ˙ 1 ˙ · ˙ b = a ˙ + Q b ˙ 1 ˙ · ˙ a + J 1 ˙ · ˙ b
52 31 51 eqtr4d φ a B b B a + R b ˙ 1 ˙ · ˙ a + R b = a ˙ 1 ˙ · ˙ a + P b ˙ 1 ˙ · ˙ b
53 1 adantr φ a B b B R Rng
54 37 adantl φ a B b B a B
55 42 adantl φ a B b B b B
56 5 14 rngacl R Rng a B b B a + R b B
57 53 54 55 56 syl3anc φ a B b B a + R b B
58 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φ a + R b B F a + R b = a + R b ˙ 1 ˙ · ˙ a + R b
59 57 58 syldan φ a B b B F a + R b = a + R b ˙ 1 ˙ · ˙ a + R b
60 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φ a B F a = a ˙ 1 ˙ · ˙ a
61 60 adantrr φ a B b B F a = a ˙ 1 ˙ · ˙ a
62 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φ b B F b = b ˙ 1 ˙ · ˙ b
63 62 adantrl φ a B b B F b = b ˙ 1 ˙ · ˙ b
64 61 63 oveq12d φ a B b B F a + P F b = a ˙ 1 ˙ · ˙ a + P b ˙ 1 ˙ · ˙ b
65 52 59 64 3eqtr4d φ a B b B F a + R b = F a + P F b
66 5 13 14 15 17 20 24 65 isghmd φ F R GrpHom P