| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|
| 2 |
|
rng2idlring.i |
|
| 3 |
|
rng2idlring.j |
|
| 4 |
|
rng2idlring.u |
|
| 5 |
|
rng2idlring.b |
|
| 6 |
|
rng2idlring.t |
|
| 7 |
|
rng2idlring.1 |
|
| 8 |
|
rngqiprngim.g |
|
| 9 |
|
rngqiprngim.q |
|
| 10 |
|
rngqiprngim.c |
|
| 11 |
|
rngqiprngim.p |
|
| 12 |
|
rngqiprngim.f |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
|
rnggrp |
|
| 17 |
1 16
|
syl |
|
| 18 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqiprng |
|
| 19 |
|
rnggrp |
|
| 20 |
18 19
|
syl |
|
| 21 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimf |
|
| 22 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqipbas |
|
| 23 |
22
|
feq3d |
|
| 24 |
21 23
|
mpbird |
|
| 25 |
|
ringrng |
|
| 26 |
4 25
|
syl |
|
| 27 |
3 26
|
eqeltrrid |
|
| 28 |
1 2 27
|
rng2idlnsg |
|
| 29 |
28 5 8 9
|
ecqusaddd |
|
| 30 |
1 2 3 4 5 6 7
|
rngqiprngghmlem3 |
|
| 31 |
29 30
|
opeq12d |
|
| 32 |
|
eqid |
|
| 33 |
|
eqid |
|
| 34 |
9
|
ovexi |
|
| 35 |
34
|
a1i |
|
| 36 |
4
|
adantr |
|
| 37 |
|
simpl |
|
| 38 |
8 9 5 32
|
quseccl0 |
|
| 39 |
1 37 38
|
syl2an |
|
| 40 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|
| 41 |
40
|
adantrr |
|
| 42 |
|
simpr |
|
| 43 |
8 9 5 32
|
quseccl0 |
|
| 44 |
1 42 43
|
syl2an |
|
| 45 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|
| 46 |
45
|
adantrl |
|
| 47 |
28 5 8 9
|
ecqusaddcl |
|
| 48 |
1 2 3 4 5 6 7
|
rngqiprngghmlem2 |
|
| 49 |
|
eqid |
|
| 50 |
|
eqid |
|
| 51 |
11 32 33 35 36 39 41 44 46 47 48 49 50 15
|
xpsadd |
|
| 52 |
31 51
|
eqtr4d |
|
| 53 |
1
|
adantr |
|
| 54 |
37
|
adantl |
|
| 55 |
42
|
adantl |
|
| 56 |
5 14
|
rngacl |
|
| 57 |
53 54 55 56
|
syl3anc |
|
| 58 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|
| 59 |
57 58
|
syldan |
|
| 60 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|
| 61 |
60
|
adantrr |
|
| 62 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|
| 63 |
62
|
adantrl |
|
| 64 |
61 63
|
oveq12d |
|
| 65 |
52 59 64
|
3eqtr4d |
|
| 66 |
5 13 14 15 17 20 24 65
|
isghmd |
|