Metamath Proof Explorer


Theorem rngqiprngimf1

Description: F is a one-to-one function from (the base set of) a non-unital ring to the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
rngqiprngim.c C = Base Q
rngqiprngim.p P = Q × 𝑠 J
rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
Assertion rngqiprngimf1 φ F : B 1-1 C × I

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 rngqiprngim.c C = Base Q
11 rngqiprngim.p P = Q × 𝑠 J
12 rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
13 ringrng J Ring J Rng
14 4 13 syl φ J Rng
15 3 14 eqeltrrid φ R 𝑠 I Rng
16 1 2 15 rng2idlnsg φ I NrmSGrp R
17 nsgsubg I NrmSGrp R I SubGrp R
18 16 17 syl φ I SubGrp R
19 8 oveq2i R / 𝑠 ˙ = R / 𝑠 R ~ QG I
20 9 19 eqtri Q = R / 𝑠 R ~ QG I
21 eqid 2Ideal R = 2Ideal R
22 20 21 qus2idrng R Rng I 2Ideal R I SubGrp R Q Rng
23 1 2 18 22 syl3anc φ Q Rng
24 rnggrp Q Rng Q Grp
25 24 grpmndd Q Rng Q Mnd
26 23 25 syl φ Q Mnd
27 ringmnd J Ring J Mnd
28 4 27 syl φ J Mnd
29 11 xpsmnd0 Q Mnd J Mnd 0 P = 0 Q 0 J
30 26 28 29 syl2anc φ 0 P = 0 Q 0 J
31 30 sneqd φ 0 P = 0 Q 0 J
32 31 imaeq2d φ F -1 0 P = F -1 0 Q 0 J
33 nfv x φ
34 opex x ˙ 1 ˙ · ˙ x V
35 34 a1i φ x B x ˙ 1 ˙ · ˙ x V
36 33 35 12 fnmptd φ F Fn B
37 fncnvima2 F Fn B F -1 0 Q 0 J = a B | F a 0 Q 0 J
38 36 37 syl φ F -1 0 Q 0 J = a B | F a 0 Q 0 J
39 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φ a B F a = a ˙ 1 ˙ · ˙ a
40 39 eleq1d φ a B F a 0 Q 0 J a ˙ 1 ˙ · ˙ a 0 Q 0 J
41 40 rabbidva φ a B | F a 0 Q 0 J = a B | a ˙ 1 ˙ · ˙ a 0 Q 0 J
42 eceq1 a = 0 R a ˙ = 0 R ˙
43 oveq2 a = 0 R 1 ˙ · ˙ a = 1 ˙ · ˙ 0 R
44 42 43 opeq12d a = 0 R a ˙ 1 ˙ · ˙ a = 0 R ˙ 1 ˙ · ˙ 0 R
45 44 eleq1d a = 0 R a ˙ 1 ˙ · ˙ a 0 Q 0 J 0 R ˙ 1 ˙ · ˙ 0 R 0 Q 0 J
46 rnggrp R Rng R Grp
47 1 46 syl φ R Grp
48 47 grpmndd φ R Mnd
49 eqid 0 R = 0 R
50 5 49 mndidcl R Mnd 0 R B
51 48 50 syl φ 0 R B
52 8 eceq2i 0 R ˙ = 0 R R ~ QG I
53 20 49 qus0 I NrmSGrp R 0 R R ~ QG I = 0 Q
54 16 53 syl φ 0 R R ~ QG I = 0 Q
55 52 54 eqtrid φ 0 R ˙ = 0 Q
56 1 2 15 rng2idl0 φ 0 R I
57 5 21 2idlss I 2Ideal R I B
58 2 57 syl φ I B
59 3 5 49 ress0g R Mnd 0 R I I B 0 R = 0 J
60 48 56 58 59 syl3anc φ 0 R = 0 J
61 60 oveq2d φ 1 ˙ · ˙ 0 R = 1 ˙ · ˙ 0 J
62 3 6 ressmulr I 2Ideal R · ˙ = J
63 2 62 syl φ · ˙ = J
64 63 oveqd φ 1 ˙ · ˙ 0 J = 1 ˙ J 0 J
65 eqid Base J = Base J
66 65 7 ringidcl J Ring 1 ˙ Base J
67 eqid J = J
68 eqid 0 J = 0 J
69 65 67 68 ringrz J Ring 1 ˙ Base J 1 ˙ J 0 J = 0 J
70 4 66 69 syl2anc2 φ 1 ˙ J 0 J = 0 J
71 61 64 70 3eqtrd φ 1 ˙ · ˙ 0 R = 0 J
72 55 71 opeq12d φ 0 R ˙ 1 ˙ · ˙ 0 R = 0 Q 0 J
73 opex 0 R ˙ 1 ˙ · ˙ 0 R V
74 73 elsn 0 R ˙ 1 ˙ · ˙ 0 R 0 Q 0 J 0 R ˙ 1 ˙ · ˙ 0 R = 0 Q 0 J
75 72 74 sylibr φ 0 R ˙ 1 ˙ · ˙ 0 R 0 Q 0 J
76 opex a ˙ 1 ˙ · ˙ a V
77 76 elsn a ˙ 1 ˙ · ˙ a 0 Q 0 J a ˙ 1 ˙ · ˙ a = 0 Q 0 J
78 8 ovexi ˙ V
79 ecexg ˙ V a ˙ V
80 78 79 ax-mp a ˙ V
81 ovex 1 ˙ · ˙ a V
82 80 81 opth a ˙ 1 ˙ · ˙ a = 0 Q 0 J a ˙ = 0 Q 1 ˙ · ˙ a = 0 J
83 77 82 bitri a ˙ 1 ˙ · ˙ a 0 Q 0 J a ˙ = 0 Q 1 ˙ · ˙ a = 0 J
84 1 2 3 4 5 6 7 8 9 rngqiprngimf1lem φ a B a ˙ = 0 Q 1 ˙ · ˙ a = 0 J a = 0 R
85 83 84 biimtrid φ a B a ˙ 1 ˙ · ˙ a 0 Q 0 J a = 0 R
86 85 imp φ a B a ˙ 1 ˙ · ˙ a 0 Q 0 J a = 0 R
87 45 51 75 86 rabeqsnd φ a B | a ˙ 1 ˙ · ˙ a 0 Q 0 J = 0 R
88 41 87 eqtrd φ a B | F a 0 Q 0 J = 0 R
89 32 38 88 3eqtrd φ F -1 0 P = 0 R
90 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngghm φ F R GrpHom P
91 eqid Base P = Base P
92 eqid 0 P = 0 P
93 5 91 49 92 kerf1ghm F R GrpHom P F : B 1-1 Base P F -1 0 P = 0 R
94 90 93 syl φ F : B 1-1 Base P F -1 0 P = 0 R
95 89 94 mpbird φ F : B 1-1 Base P
96 eqidd φ F = F
97 eqidd φ B = B
98 1 2 3 4 5 6 7 8 9 10 11 rngqipbas φ Base P = C × I
99 96 97 98 f1eq123d φ F : B 1-1 Base P F : B 1-1 C × I
100 95 99 mpbid φ F : B 1-1 C × I