| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
| 2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
| 3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
| 4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
| 5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
| 6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
| 7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
| 8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
| 9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
| 10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
| 11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
| 12 |
|
rngqiprngim.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
| 13 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
| 14 |
4 13
|
syl |
|- ( ph -> J e. Rng ) |
| 15 |
3 14
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
| 16 |
1 2 15
|
rng2idlnsg |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
| 17 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> I e. ( SubGrp ` R ) ) |
| 19 |
8
|
oveq2i |
|- ( R /s .~ ) = ( R /s ( R ~QG I ) ) |
| 20 |
9 19
|
eqtri |
|- Q = ( R /s ( R ~QG I ) ) |
| 21 |
|
eqid |
|- ( 2Ideal ` R ) = ( 2Ideal ` R ) |
| 22 |
20 21
|
qus2idrng |
|- ( ( R e. Rng /\ I e. ( 2Ideal ` R ) /\ I e. ( SubGrp ` R ) ) -> Q e. Rng ) |
| 23 |
1 2 18 22
|
syl3anc |
|- ( ph -> Q e. Rng ) |
| 24 |
|
rnggrp |
|- ( Q e. Rng -> Q e. Grp ) |
| 25 |
24
|
grpmndd |
|- ( Q e. Rng -> Q e. Mnd ) |
| 26 |
23 25
|
syl |
|- ( ph -> Q e. Mnd ) |
| 27 |
|
ringmnd |
|- ( J e. Ring -> J e. Mnd ) |
| 28 |
4 27
|
syl |
|- ( ph -> J e. Mnd ) |
| 29 |
11
|
xpsmnd0 |
|- ( ( Q e. Mnd /\ J e. Mnd ) -> ( 0g ` P ) = <. ( 0g ` Q ) , ( 0g ` J ) >. ) |
| 30 |
26 28 29
|
syl2anc |
|- ( ph -> ( 0g ` P ) = <. ( 0g ` Q ) , ( 0g ` J ) >. ) |
| 31 |
30
|
sneqd |
|- ( ph -> { ( 0g ` P ) } = { <. ( 0g ` Q ) , ( 0g ` J ) >. } ) |
| 32 |
31
|
imaeq2d |
|- ( ph -> ( `' F " { ( 0g ` P ) } ) = ( `' F " { <. ( 0g ` Q ) , ( 0g ` J ) >. } ) ) |
| 33 |
|
nfv |
|- F/ x ph |
| 34 |
|
opex |
|- <. [ x ] .~ , ( .1. .x. x ) >. e. _V |
| 35 |
34
|
a1i |
|- ( ( ph /\ x e. B ) -> <. [ x ] .~ , ( .1. .x. x ) >. e. _V ) |
| 36 |
33 35 12
|
fnmptd |
|- ( ph -> F Fn B ) |
| 37 |
|
fncnvima2 |
|- ( F Fn B -> ( `' F " { <. ( 0g ` Q ) , ( 0g ` J ) >. } ) = { a e. B | ( F ` a ) e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } } ) |
| 38 |
36 37
|
syl |
|- ( ph -> ( `' F " { <. ( 0g ` Q ) , ( 0g ` J ) >. } ) = { a e. B | ( F ` a ) e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } } ) |
| 39 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|- ( ( ph /\ a e. B ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) |
| 40 |
39
|
eleq1d |
|- ( ( ph /\ a e. B ) -> ( ( F ` a ) e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } <-> <. [ a ] .~ , ( .1. .x. a ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } ) ) |
| 41 |
40
|
rabbidva |
|- ( ph -> { a e. B | ( F ` a ) e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } } = { a e. B | <. [ a ] .~ , ( .1. .x. a ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } } ) |
| 42 |
|
eceq1 |
|- ( a = ( 0g ` R ) -> [ a ] .~ = [ ( 0g ` R ) ] .~ ) |
| 43 |
|
oveq2 |
|- ( a = ( 0g ` R ) -> ( .1. .x. a ) = ( .1. .x. ( 0g ` R ) ) ) |
| 44 |
42 43
|
opeq12d |
|- ( a = ( 0g ` R ) -> <. [ a ] .~ , ( .1. .x. a ) >. = <. [ ( 0g ` R ) ] .~ , ( .1. .x. ( 0g ` R ) ) >. ) |
| 45 |
44
|
eleq1d |
|- ( a = ( 0g ` R ) -> ( <. [ a ] .~ , ( .1. .x. a ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } <-> <. [ ( 0g ` R ) ] .~ , ( .1. .x. ( 0g ` R ) ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } ) ) |
| 46 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
| 47 |
1 46
|
syl |
|- ( ph -> R e. Grp ) |
| 48 |
47
|
grpmndd |
|- ( ph -> R e. Mnd ) |
| 49 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 50 |
5 49
|
mndidcl |
|- ( R e. Mnd -> ( 0g ` R ) e. B ) |
| 51 |
48 50
|
syl |
|- ( ph -> ( 0g ` R ) e. B ) |
| 52 |
8
|
eceq2i |
|- [ ( 0g ` R ) ] .~ = [ ( 0g ` R ) ] ( R ~QG I ) |
| 53 |
20 49
|
qus0 |
|- ( I e. ( NrmSGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
| 54 |
16 53
|
syl |
|- ( ph -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
| 55 |
52 54
|
eqtrid |
|- ( ph -> [ ( 0g ` R ) ] .~ = ( 0g ` Q ) ) |
| 56 |
1 2 15
|
rng2idl0 |
|- ( ph -> ( 0g ` R ) e. I ) |
| 57 |
5 21
|
2idlss |
|- ( I e. ( 2Ideal ` R ) -> I C_ B ) |
| 58 |
2 57
|
syl |
|- ( ph -> I C_ B ) |
| 59 |
3 5 49
|
ress0g |
|- ( ( R e. Mnd /\ ( 0g ` R ) e. I /\ I C_ B ) -> ( 0g ` R ) = ( 0g ` J ) ) |
| 60 |
48 56 58 59
|
syl3anc |
|- ( ph -> ( 0g ` R ) = ( 0g ` J ) ) |
| 61 |
60
|
oveq2d |
|- ( ph -> ( .1. .x. ( 0g ` R ) ) = ( .1. .x. ( 0g ` J ) ) ) |
| 62 |
3 6
|
ressmulr |
|- ( I e. ( 2Ideal ` R ) -> .x. = ( .r ` J ) ) |
| 63 |
2 62
|
syl |
|- ( ph -> .x. = ( .r ` J ) ) |
| 64 |
63
|
oveqd |
|- ( ph -> ( .1. .x. ( 0g ` J ) ) = ( .1. ( .r ` J ) ( 0g ` J ) ) ) |
| 65 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
| 66 |
65 7
|
ringidcl |
|- ( J e. Ring -> .1. e. ( Base ` J ) ) |
| 67 |
|
eqid |
|- ( .r ` J ) = ( .r ` J ) |
| 68 |
|
eqid |
|- ( 0g ` J ) = ( 0g ` J ) |
| 69 |
65 67 68
|
ringrz |
|- ( ( J e. Ring /\ .1. e. ( Base ` J ) ) -> ( .1. ( .r ` J ) ( 0g ` J ) ) = ( 0g ` J ) ) |
| 70 |
4 66 69
|
syl2anc2 |
|- ( ph -> ( .1. ( .r ` J ) ( 0g ` J ) ) = ( 0g ` J ) ) |
| 71 |
61 64 70
|
3eqtrd |
|- ( ph -> ( .1. .x. ( 0g ` R ) ) = ( 0g ` J ) ) |
| 72 |
55 71
|
opeq12d |
|- ( ph -> <. [ ( 0g ` R ) ] .~ , ( .1. .x. ( 0g ` R ) ) >. = <. ( 0g ` Q ) , ( 0g ` J ) >. ) |
| 73 |
|
opex |
|- <. [ ( 0g ` R ) ] .~ , ( .1. .x. ( 0g ` R ) ) >. e. _V |
| 74 |
73
|
elsn |
|- ( <. [ ( 0g ` R ) ] .~ , ( .1. .x. ( 0g ` R ) ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } <-> <. [ ( 0g ` R ) ] .~ , ( .1. .x. ( 0g ` R ) ) >. = <. ( 0g ` Q ) , ( 0g ` J ) >. ) |
| 75 |
72 74
|
sylibr |
|- ( ph -> <. [ ( 0g ` R ) ] .~ , ( .1. .x. ( 0g ` R ) ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } ) |
| 76 |
|
opex |
|- <. [ a ] .~ , ( .1. .x. a ) >. e. _V |
| 77 |
76
|
elsn |
|- ( <. [ a ] .~ , ( .1. .x. a ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } <-> <. [ a ] .~ , ( .1. .x. a ) >. = <. ( 0g ` Q ) , ( 0g ` J ) >. ) |
| 78 |
8
|
ovexi |
|- .~ e. _V |
| 79 |
|
ecexg |
|- ( .~ e. _V -> [ a ] .~ e. _V ) |
| 80 |
78 79
|
ax-mp |
|- [ a ] .~ e. _V |
| 81 |
|
ovex |
|- ( .1. .x. a ) e. _V |
| 82 |
80 81
|
opth |
|- ( <. [ a ] .~ , ( .1. .x. a ) >. = <. ( 0g ` Q ) , ( 0g ` J ) >. <-> ( [ a ] .~ = ( 0g ` Q ) /\ ( .1. .x. a ) = ( 0g ` J ) ) ) |
| 83 |
77 82
|
bitri |
|- ( <. [ a ] .~ , ( .1. .x. a ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } <-> ( [ a ] .~ = ( 0g ` Q ) /\ ( .1. .x. a ) = ( 0g ` J ) ) ) |
| 84 |
1 2 3 4 5 6 7 8 9
|
rngqiprngimf1lem |
|- ( ( ph /\ a e. B ) -> ( ( [ a ] .~ = ( 0g ` Q ) /\ ( .1. .x. a ) = ( 0g ` J ) ) -> a = ( 0g ` R ) ) ) |
| 85 |
83 84
|
biimtrid |
|- ( ( ph /\ a e. B ) -> ( <. [ a ] .~ , ( .1. .x. a ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } -> a = ( 0g ` R ) ) ) |
| 86 |
85
|
imp |
|- ( ( ( ph /\ a e. B ) /\ <. [ a ] .~ , ( .1. .x. a ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } ) -> a = ( 0g ` R ) ) |
| 87 |
45 51 75 86
|
rabeqsnd |
|- ( ph -> { a e. B | <. [ a ] .~ , ( .1. .x. a ) >. e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } } = { ( 0g ` R ) } ) |
| 88 |
41 87
|
eqtrd |
|- ( ph -> { a e. B | ( F ` a ) e. { <. ( 0g ` Q ) , ( 0g ` J ) >. } } = { ( 0g ` R ) } ) |
| 89 |
32 38 88
|
3eqtrd |
|- ( ph -> ( `' F " { ( 0g ` P ) } ) = { ( 0g ` R ) } ) |
| 90 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngghm |
|- ( ph -> F e. ( R GrpHom P ) ) |
| 91 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 92 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 93 |
5 91 49 92
|
kerf1ghm |
|- ( F e. ( R GrpHom P ) -> ( F : B -1-1-> ( Base ` P ) <-> ( `' F " { ( 0g ` P ) } ) = { ( 0g ` R ) } ) ) |
| 94 |
90 93
|
syl |
|- ( ph -> ( F : B -1-1-> ( Base ` P ) <-> ( `' F " { ( 0g ` P ) } ) = { ( 0g ` R ) } ) ) |
| 95 |
89 94
|
mpbird |
|- ( ph -> F : B -1-1-> ( Base ` P ) ) |
| 96 |
|
eqidd |
|- ( ph -> F = F ) |
| 97 |
|
eqidd |
|- ( ph -> B = B ) |
| 98 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqipbas |
|- ( ph -> ( Base ` P ) = ( C X. I ) ) |
| 99 |
96 97 98
|
f1eq123d |
|- ( ph -> ( F : B -1-1-> ( Base ` P ) <-> F : B -1-1-> ( C X. I ) ) ) |
| 100 |
95 99
|
mpbid |
|- ( ph -> F : B -1-1-> ( C X. I ) ) |