| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r |  |-  ( ph -> R e. Rng ) | 
						
							| 2 |  | rng2idlring.i |  |-  ( ph -> I e. ( 2Ideal ` R ) ) | 
						
							| 3 |  | rng2idlring.j |  |-  J = ( R |`s I ) | 
						
							| 4 |  | rng2idlring.u |  |-  ( ph -> J e. Ring ) | 
						
							| 5 |  | rng2idlring.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | rng2idlring.t |  |-  .x. = ( .r ` R ) | 
						
							| 7 |  | rng2idlring.1 |  |-  .1. = ( 1r ` J ) | 
						
							| 8 |  | rngqiprngim.g |  |-  .~ = ( R ~QG I ) | 
						
							| 9 |  | rngqiprngim.q |  |-  Q = ( R /s .~ ) | 
						
							| 10 |  | ringrng |  |-  ( J e. Ring -> J e. Rng ) | 
						
							| 11 | 4 10 | syl |  |-  ( ph -> J e. Rng ) | 
						
							| 12 | 3 11 | eqeltrrid |  |-  ( ph -> ( R |`s I ) e. Rng ) | 
						
							| 13 | 1 2 12 | rng2idlnsg |  |-  ( ph -> I e. ( NrmSGrp ` R ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ A e. B ) -> I e. ( NrmSGrp ` R ) ) | 
						
							| 15 | 8 | oveq2i |  |-  ( R /s .~ ) = ( R /s ( R ~QG I ) ) | 
						
							| 16 | 9 15 | eqtri |  |-  Q = ( R /s ( R ~QG I ) ) | 
						
							| 17 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 18 | 16 17 | qus0 |  |-  ( I e. ( NrmSGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) | 
						
							| 19 | 14 18 | syl |  |-  ( ( ph /\ A e. B ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) | 
						
							| 20 | 19 | eqcomd |  |-  ( ( ph /\ A e. B ) -> ( 0g ` Q ) = [ ( 0g ` R ) ] ( R ~QG I ) ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( ( ph /\ A e. B ) -> ( [ A ] .~ = ( 0g ` Q ) <-> [ A ] .~ = [ ( 0g ` R ) ] ( R ~QG I ) ) ) | 
						
							| 22 | 8 | eqcomi |  |-  ( R ~QG I ) = .~ | 
						
							| 23 | 22 | eceq2i |  |-  [ ( 0g ` R ) ] ( R ~QG I ) = [ ( 0g ` R ) ] .~ | 
						
							| 24 | 23 | a1i |  |-  ( ( ph /\ A e. B ) -> [ ( 0g ` R ) ] ( R ~QG I ) = [ ( 0g ` R ) ] .~ ) | 
						
							| 25 | 24 | eqeq2d |  |-  ( ( ph /\ A e. B ) -> ( [ A ] .~ = [ ( 0g ` R ) ] ( R ~QG I ) <-> [ A ] .~ = [ ( 0g ` R ) ] .~ ) ) | 
						
							| 26 |  | eqcom |  |-  ( [ A ] .~ = [ ( 0g ` R ) ] .~ <-> [ ( 0g ` R ) ] .~ = [ A ] .~ ) | 
						
							| 27 |  | rngabl |  |-  ( R e. Rng -> R e. Abel ) | 
						
							| 28 | 1 27 | syl |  |-  ( ph -> R e. Abel ) | 
						
							| 29 |  | nsgsubg |  |-  ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) | 
						
							| 30 | 13 29 | syl |  |-  ( ph -> I e. ( SubGrp ` R ) ) | 
						
							| 31 | 28 30 | jca |  |-  ( ph -> ( R e. Abel /\ I e. ( SubGrp ` R ) ) ) | 
						
							| 32 | 5 17 | rng0cl |  |-  ( R e. Rng -> ( 0g ` R ) e. B ) | 
						
							| 33 | 1 32 | syl |  |-  ( ph -> ( 0g ` R ) e. B ) | 
						
							| 34 | 33 | anim1i |  |-  ( ( ph /\ A e. B ) -> ( ( 0g ` R ) e. B /\ A e. B ) ) | 
						
							| 35 |  | eqid |  |-  ( -g ` R ) = ( -g ` R ) | 
						
							| 36 | 5 35 8 | qusecsub |  |-  ( ( ( R e. Abel /\ I e. ( SubGrp ` R ) ) /\ ( ( 0g ` R ) e. B /\ A e. B ) ) -> ( [ ( 0g ` R ) ] .~ = [ A ] .~ <-> ( A ( -g ` R ) ( 0g ` R ) ) e. I ) ) | 
						
							| 37 | 31 34 36 | syl2an2r |  |-  ( ( ph /\ A e. B ) -> ( [ ( 0g ` R ) ] .~ = [ A ] .~ <-> ( A ( -g ` R ) ( 0g ` R ) ) e. I ) ) | 
						
							| 38 | 26 37 | bitrid |  |-  ( ( ph /\ A e. B ) -> ( [ A ] .~ = [ ( 0g ` R ) ] .~ <-> ( A ( -g ` R ) ( 0g ` R ) ) e. I ) ) | 
						
							| 39 | 21 25 38 | 3bitrd |  |-  ( ( ph /\ A e. B ) -> ( [ A ] .~ = ( 0g ` Q ) <-> ( A ( -g ` R ) ( 0g ` R ) ) e. I ) ) | 
						
							| 40 |  | rnggrp |  |-  ( R e. Rng -> R e. Grp ) | 
						
							| 41 | 1 40 | syl |  |-  ( ph -> R e. Grp ) | 
						
							| 42 | 5 17 35 | grpsubid1 |  |-  ( ( R e. Grp /\ A e. B ) -> ( A ( -g ` R ) ( 0g ` R ) ) = A ) | 
						
							| 43 | 41 42 | sylan |  |-  ( ( ph /\ A e. B ) -> ( A ( -g ` R ) ( 0g ` R ) ) = A ) | 
						
							| 44 | 43 | eleq1d |  |-  ( ( ph /\ A e. B ) -> ( ( A ( -g ` R ) ( 0g ` R ) ) e. I <-> A e. I ) ) | 
						
							| 45 |  | eqid |  |-  ( Base ` J ) = ( Base ` J ) | 
						
							| 46 |  | eqid |  |-  ( 0g ` J ) = ( 0g ` J ) | 
						
							| 47 |  | eqid |  |-  ( .r ` J ) = ( .r ` J ) | 
						
							| 48 | 4 | adantr |  |-  ( ( ph /\ A e. ( Base ` J ) ) -> J e. Ring ) | 
						
							| 49 |  | simpr |  |-  ( ( ph /\ A e. ( Base ` J ) ) -> A e. ( Base ` J ) ) | 
						
							| 50 |  | eqid |  |-  ( 1r ` J ) = ( 1r ` J ) | 
						
							| 51 | 45 46 47 48 49 50 | ring1nzdiv |  |-  ( ( ph /\ A e. ( Base ` J ) ) -> ( ( ( 1r ` J ) ( .r ` J ) A ) = ( 0g ` J ) <-> A = ( 0g ` J ) ) ) | 
						
							| 52 | 51 | biimpd |  |-  ( ( ph /\ A e. ( Base ` J ) ) -> ( ( ( 1r ` J ) ( .r ` J ) A ) = ( 0g ` J ) -> A = ( 0g ` J ) ) ) | 
						
							| 53 | 52 | ex |  |-  ( ph -> ( A e. ( Base ` J ) -> ( ( ( 1r ` J ) ( .r ` J ) A ) = ( 0g ` J ) -> A = ( 0g ` J ) ) ) ) | 
						
							| 54 | 2 3 45 | 2idlbas |  |-  ( ph -> ( Base ` J ) = I ) | 
						
							| 55 | 54 | eqcomd |  |-  ( ph -> I = ( Base ` J ) ) | 
						
							| 56 | 55 | eleq2d |  |-  ( ph -> ( A e. I <-> A e. ( Base ` J ) ) ) | 
						
							| 57 | 3 6 | ressmulr |  |-  ( I e. ( 2Ideal ` R ) -> .x. = ( .r ` J ) ) | 
						
							| 58 | 2 57 | syl |  |-  ( ph -> .x. = ( .r ` J ) ) | 
						
							| 59 | 7 | a1i |  |-  ( ph -> .1. = ( 1r ` J ) ) | 
						
							| 60 |  | eqidd |  |-  ( ph -> A = A ) | 
						
							| 61 | 58 59 60 | oveq123d |  |-  ( ph -> ( .1. .x. A ) = ( ( 1r ` J ) ( .r ` J ) A ) ) | 
						
							| 62 | 61 | eqeq1d |  |-  ( ph -> ( ( .1. .x. A ) = ( 0g ` J ) <-> ( ( 1r ` J ) ( .r ` J ) A ) = ( 0g ` J ) ) ) | 
						
							| 63 | 3 17 | subg0 |  |-  ( I e. ( SubGrp ` R ) -> ( 0g ` R ) = ( 0g ` J ) ) | 
						
							| 64 | 30 63 | syl |  |-  ( ph -> ( 0g ` R ) = ( 0g ` J ) ) | 
						
							| 65 | 64 | eqeq2d |  |-  ( ph -> ( A = ( 0g ` R ) <-> A = ( 0g ` J ) ) ) | 
						
							| 66 | 62 65 | imbi12d |  |-  ( ph -> ( ( ( .1. .x. A ) = ( 0g ` J ) -> A = ( 0g ` R ) ) <-> ( ( ( 1r ` J ) ( .r ` J ) A ) = ( 0g ` J ) -> A = ( 0g ` J ) ) ) ) | 
						
							| 67 | 53 56 66 | 3imtr4d |  |-  ( ph -> ( A e. I -> ( ( .1. .x. A ) = ( 0g ` J ) -> A = ( 0g ` R ) ) ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ph /\ A e. B ) -> ( A e. I -> ( ( .1. .x. A ) = ( 0g ` J ) -> A = ( 0g ` R ) ) ) ) | 
						
							| 69 | 44 68 | sylbid |  |-  ( ( ph /\ A e. B ) -> ( ( A ( -g ` R ) ( 0g ` R ) ) e. I -> ( ( .1. .x. A ) = ( 0g ` J ) -> A = ( 0g ` R ) ) ) ) | 
						
							| 70 | 39 69 | sylbid |  |-  ( ( ph /\ A e. B ) -> ( [ A ] .~ = ( 0g ` Q ) -> ( ( .1. .x. A ) = ( 0g ` J ) -> A = ( 0g ` R ) ) ) ) | 
						
							| 71 | 70 | impd |  |-  ( ( ph /\ A e. B ) -> ( ( [ A ] .~ = ( 0g ` Q ) /\ ( .1. .x. A ) = ( 0g ` J ) ) -> A = ( 0g ` R ) ) ) |