Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
10 |
|
ringrng |
|- ( J e. Ring -> J e. Rng ) |
11 |
4 10
|
syl |
|- ( ph -> J e. Rng ) |
12 |
3 11
|
eqeltrrid |
|- ( ph -> ( R |`s I ) e. Rng ) |
13 |
1 2 12
|
rng2idlnsg |
|- ( ph -> I e. ( NrmSGrp ` R ) ) |
14 |
13
|
adantr |
|- ( ( ph /\ A e. B ) -> I e. ( NrmSGrp ` R ) ) |
15 |
8
|
oveq2i |
|- ( R /s .~ ) = ( R /s ( R ~QG I ) ) |
16 |
9 15
|
eqtri |
|- Q = ( R /s ( R ~QG I ) ) |
17 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
18 |
16 17
|
qus0 |
|- ( I e. ( NrmSGrp ` R ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
19 |
14 18
|
syl |
|- ( ( ph /\ A e. B ) -> [ ( 0g ` R ) ] ( R ~QG I ) = ( 0g ` Q ) ) |
20 |
19
|
eqcomd |
|- ( ( ph /\ A e. B ) -> ( 0g ` Q ) = [ ( 0g ` R ) ] ( R ~QG I ) ) |
21 |
20
|
eqeq2d |
|- ( ( ph /\ A e. B ) -> ( [ A ] .~ = ( 0g ` Q ) <-> [ A ] .~ = [ ( 0g ` R ) ] ( R ~QG I ) ) ) |
22 |
8
|
eqcomi |
|- ( R ~QG I ) = .~ |
23 |
22
|
eceq2i |
|- [ ( 0g ` R ) ] ( R ~QG I ) = [ ( 0g ` R ) ] .~ |
24 |
23
|
a1i |
|- ( ( ph /\ A e. B ) -> [ ( 0g ` R ) ] ( R ~QG I ) = [ ( 0g ` R ) ] .~ ) |
25 |
24
|
eqeq2d |
|- ( ( ph /\ A e. B ) -> ( [ A ] .~ = [ ( 0g ` R ) ] ( R ~QG I ) <-> [ A ] .~ = [ ( 0g ` R ) ] .~ ) ) |
26 |
|
eqcom |
|- ( [ A ] .~ = [ ( 0g ` R ) ] .~ <-> [ ( 0g ` R ) ] .~ = [ A ] .~ ) |
27 |
|
rngabl |
|- ( R e. Rng -> R e. Abel ) |
28 |
1 27
|
syl |
|- ( ph -> R e. Abel ) |
29 |
|
nsgsubg |
|- ( I e. ( NrmSGrp ` R ) -> I e. ( SubGrp ` R ) ) |
30 |
13 29
|
syl |
|- ( ph -> I e. ( SubGrp ` R ) ) |
31 |
28 30
|
jca |
|- ( ph -> ( R e. Abel /\ I e. ( SubGrp ` R ) ) ) |
32 |
5 17
|
rng0cl |
|- ( R e. Rng -> ( 0g ` R ) e. B ) |
33 |
1 32
|
syl |
|- ( ph -> ( 0g ` R ) e. B ) |
34 |
33
|
anim1i |
|- ( ( ph /\ A e. B ) -> ( ( 0g ` R ) e. B /\ A e. B ) ) |
35 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
36 |
5 35 8
|
qusecsub |
|- ( ( ( R e. Abel /\ I e. ( SubGrp ` R ) ) /\ ( ( 0g ` R ) e. B /\ A e. B ) ) -> ( [ ( 0g ` R ) ] .~ = [ A ] .~ <-> ( A ( -g ` R ) ( 0g ` R ) ) e. I ) ) |
37 |
31 34 36
|
syl2an2r |
|- ( ( ph /\ A e. B ) -> ( [ ( 0g ` R ) ] .~ = [ A ] .~ <-> ( A ( -g ` R ) ( 0g ` R ) ) e. I ) ) |
38 |
26 37
|
bitrid |
|- ( ( ph /\ A e. B ) -> ( [ A ] .~ = [ ( 0g ` R ) ] .~ <-> ( A ( -g ` R ) ( 0g ` R ) ) e. I ) ) |
39 |
21 25 38
|
3bitrd |
|- ( ( ph /\ A e. B ) -> ( [ A ] .~ = ( 0g ` Q ) <-> ( A ( -g ` R ) ( 0g ` R ) ) e. I ) ) |
40 |
|
rnggrp |
|- ( R e. Rng -> R e. Grp ) |
41 |
1 40
|
syl |
|- ( ph -> R e. Grp ) |
42 |
5 17 35
|
grpsubid1 |
|- ( ( R e. Grp /\ A e. B ) -> ( A ( -g ` R ) ( 0g ` R ) ) = A ) |
43 |
41 42
|
sylan |
|- ( ( ph /\ A e. B ) -> ( A ( -g ` R ) ( 0g ` R ) ) = A ) |
44 |
43
|
eleq1d |
|- ( ( ph /\ A e. B ) -> ( ( A ( -g ` R ) ( 0g ` R ) ) e. I <-> A e. I ) ) |
45 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
46 |
|
eqid |
|- ( 0g ` J ) = ( 0g ` J ) |
47 |
|
eqid |
|- ( .r ` J ) = ( .r ` J ) |
48 |
4
|
adantr |
|- ( ( ph /\ A e. ( Base ` J ) ) -> J e. Ring ) |
49 |
|
simpr |
|- ( ( ph /\ A e. ( Base ` J ) ) -> A e. ( Base ` J ) ) |
50 |
|
eqid |
|- ( 1r ` J ) = ( 1r ` J ) |
51 |
45 46 47 48 49 50
|
ring1nzdiv |
|- ( ( ph /\ A e. ( Base ` J ) ) -> ( ( ( 1r ` J ) ( .r ` J ) A ) = ( 0g ` J ) <-> A = ( 0g ` J ) ) ) |
52 |
51
|
biimpd |
|- ( ( ph /\ A e. ( Base ` J ) ) -> ( ( ( 1r ` J ) ( .r ` J ) A ) = ( 0g ` J ) -> A = ( 0g ` J ) ) ) |
53 |
52
|
ex |
|- ( ph -> ( A e. ( Base ` J ) -> ( ( ( 1r ` J ) ( .r ` J ) A ) = ( 0g ` J ) -> A = ( 0g ` J ) ) ) ) |
54 |
2 3 45
|
2idlbas |
|- ( ph -> ( Base ` J ) = I ) |
55 |
54
|
eqcomd |
|- ( ph -> I = ( Base ` J ) ) |
56 |
55
|
eleq2d |
|- ( ph -> ( A e. I <-> A e. ( Base ` J ) ) ) |
57 |
3 6
|
ressmulr |
|- ( I e. ( 2Ideal ` R ) -> .x. = ( .r ` J ) ) |
58 |
2 57
|
syl |
|- ( ph -> .x. = ( .r ` J ) ) |
59 |
7
|
a1i |
|- ( ph -> .1. = ( 1r ` J ) ) |
60 |
|
eqidd |
|- ( ph -> A = A ) |
61 |
58 59 60
|
oveq123d |
|- ( ph -> ( .1. .x. A ) = ( ( 1r ` J ) ( .r ` J ) A ) ) |
62 |
61
|
eqeq1d |
|- ( ph -> ( ( .1. .x. A ) = ( 0g ` J ) <-> ( ( 1r ` J ) ( .r ` J ) A ) = ( 0g ` J ) ) ) |
63 |
3 17
|
subg0 |
|- ( I e. ( SubGrp ` R ) -> ( 0g ` R ) = ( 0g ` J ) ) |
64 |
30 63
|
syl |
|- ( ph -> ( 0g ` R ) = ( 0g ` J ) ) |
65 |
64
|
eqeq2d |
|- ( ph -> ( A = ( 0g ` R ) <-> A = ( 0g ` J ) ) ) |
66 |
62 65
|
imbi12d |
|- ( ph -> ( ( ( .1. .x. A ) = ( 0g ` J ) -> A = ( 0g ` R ) ) <-> ( ( ( 1r ` J ) ( .r ` J ) A ) = ( 0g ` J ) -> A = ( 0g ` J ) ) ) ) |
67 |
53 56 66
|
3imtr4d |
|- ( ph -> ( A e. I -> ( ( .1. .x. A ) = ( 0g ` J ) -> A = ( 0g ` R ) ) ) ) |
68 |
67
|
adantr |
|- ( ( ph /\ A e. B ) -> ( A e. I -> ( ( .1. .x. A ) = ( 0g ` J ) -> A = ( 0g ` R ) ) ) ) |
69 |
44 68
|
sylbid |
|- ( ( ph /\ A e. B ) -> ( ( A ( -g ` R ) ( 0g ` R ) ) e. I -> ( ( .1. .x. A ) = ( 0g ` J ) -> A = ( 0g ` R ) ) ) ) |
70 |
39 69
|
sylbid |
|- ( ( ph /\ A e. B ) -> ( [ A ] .~ = ( 0g ` Q ) -> ( ( .1. .x. A ) = ( 0g ` J ) -> A = ( 0g ` R ) ) ) ) |
71 |
70
|
impd |
|- ( ( ph /\ A e. B ) -> ( ( [ A ] .~ = ( 0g ` Q ) /\ ( .1. .x. A ) = ( 0g ` J ) ) -> A = ( 0g ` R ) ) ) |