| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
|
| 2 |
|
rng2idlring.i |
|
| 3 |
|
rng2idlring.j |
|
| 4 |
|
rng2idlring.u |
|
| 5 |
|
rng2idlring.b |
|
| 6 |
|
rng2idlring.t |
|
| 7 |
|
rng2idlring.1 |
|
| 8 |
|
rngqiprngim.g |
|
| 9 |
|
rngqiprngim.q |
|
| 10 |
|
ringrng |
|
| 11 |
4 10
|
syl |
|
| 12 |
3 11
|
eqeltrrid |
|
| 13 |
1 2 12
|
rng2idlnsg |
|
| 14 |
13
|
adantr |
|
| 15 |
8
|
oveq2i |
|
| 16 |
9 15
|
eqtri |
|
| 17 |
|
eqid |
|
| 18 |
16 17
|
qus0 |
|
| 19 |
14 18
|
syl |
|
| 20 |
19
|
eqcomd |
|
| 21 |
20
|
eqeq2d |
|
| 22 |
8
|
eqcomi |
|
| 23 |
22
|
eceq2i |
|
| 24 |
23
|
a1i |
|
| 25 |
24
|
eqeq2d |
|
| 26 |
|
eqcom |
|
| 27 |
|
rngabl |
|
| 28 |
1 27
|
syl |
|
| 29 |
|
nsgsubg |
|
| 30 |
13 29
|
syl |
|
| 31 |
28 30
|
jca |
|
| 32 |
5 17
|
rng0cl |
|
| 33 |
1 32
|
syl |
|
| 34 |
33
|
anim1i |
|
| 35 |
|
eqid |
|
| 36 |
5 35 8
|
qusecsub |
|
| 37 |
31 34 36
|
syl2an2r |
|
| 38 |
26 37
|
bitrid |
|
| 39 |
21 25 38
|
3bitrd |
|
| 40 |
|
rnggrp |
|
| 41 |
1 40
|
syl |
|
| 42 |
5 17 35
|
grpsubid1 |
|
| 43 |
41 42
|
sylan |
|
| 44 |
43
|
eleq1d |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
4
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
|
eqid |
|
| 51 |
45 46 47 48 49 50
|
ring1nzdiv |
|
| 52 |
51
|
biimpd |
|
| 53 |
52
|
ex |
|
| 54 |
2 3 45
|
2idlbas |
|
| 55 |
54
|
eqcomd |
|
| 56 |
55
|
eleq2d |
|
| 57 |
3 6
|
ressmulr |
|
| 58 |
2 57
|
syl |
|
| 59 |
7
|
a1i |
|
| 60 |
|
eqidd |
|
| 61 |
58 59 60
|
oveq123d |
|
| 62 |
61
|
eqeq1d |
|
| 63 |
3 17
|
subg0 |
|
| 64 |
30 63
|
syl |
|
| 65 |
64
|
eqeq2d |
|
| 66 |
62 65
|
imbi12d |
|
| 67 |
53 56 66
|
3imtr4d |
|
| 68 |
67
|
adantr |
|
| 69 |
44 68
|
sylbid |
|
| 70 |
39 69
|
sylbid |
|
| 71 |
70
|
impd |
|