Metamath Proof Explorer


Theorem rngqiprngimf1lem

Description: Lemma for rngqiprngimf1 . (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
Assertion rngqiprngimf1lem φ A B A ˙ = 0 Q 1 ˙ · ˙ A = 0 J A = 0 R

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 ringrng J Ring J Rng
11 4 10 syl φ J Rng
12 3 11 eqeltrrid φ R 𝑠 I Rng
13 1 2 12 rng2idlnsg φ I NrmSGrp R
14 13 adantr φ A B I NrmSGrp R
15 8 oveq2i R / 𝑠 ˙ = R / 𝑠 R ~ QG I
16 9 15 eqtri Q = R / 𝑠 R ~ QG I
17 eqid 0 R = 0 R
18 16 17 qus0 I NrmSGrp R 0 R R ~ QG I = 0 Q
19 14 18 syl φ A B 0 R R ~ QG I = 0 Q
20 19 eqcomd φ A B 0 Q = 0 R R ~ QG I
21 20 eqeq2d φ A B A ˙ = 0 Q A ˙ = 0 R R ~ QG I
22 8 eqcomi R ~ QG I = ˙
23 22 eceq2i 0 R R ~ QG I = 0 R ˙
24 23 a1i φ A B 0 R R ~ QG I = 0 R ˙
25 24 eqeq2d φ A B A ˙ = 0 R R ~ QG I A ˙ = 0 R ˙
26 eqcom A ˙ = 0 R ˙ 0 R ˙ = A ˙
27 rngabl R Rng R Abel
28 1 27 syl φ R Abel
29 nsgsubg I NrmSGrp R I SubGrp R
30 13 29 syl φ I SubGrp R
31 28 30 jca φ R Abel I SubGrp R
32 5 17 rng0cl R Rng 0 R B
33 1 32 syl φ 0 R B
34 33 anim1i φ A B 0 R B A B
35 eqid - R = - R
36 5 35 8 qusecsub R Abel I SubGrp R 0 R B A B 0 R ˙ = A ˙ A - R 0 R I
37 31 34 36 syl2an2r φ A B 0 R ˙ = A ˙ A - R 0 R I
38 26 37 bitrid φ A B A ˙ = 0 R ˙ A - R 0 R I
39 21 25 38 3bitrd φ A B A ˙ = 0 Q A - R 0 R I
40 rnggrp R Rng R Grp
41 1 40 syl φ R Grp
42 5 17 35 grpsubid1 R Grp A B A - R 0 R = A
43 41 42 sylan φ A B A - R 0 R = A
44 43 eleq1d φ A B A - R 0 R I A I
45 eqid Base J = Base J
46 eqid 0 J = 0 J
47 eqid J = J
48 4 adantr φ A Base J J Ring
49 simpr φ A Base J A Base J
50 eqid 1 J = 1 J
51 45 46 47 48 49 50 ring1nzdiv φ A Base J 1 J J A = 0 J A = 0 J
52 51 biimpd φ A Base J 1 J J A = 0 J A = 0 J
53 52 ex φ A Base J 1 J J A = 0 J A = 0 J
54 2 3 45 2idlbas φ Base J = I
55 54 eqcomd φ I = Base J
56 55 eleq2d φ A I A Base J
57 3 6 ressmulr I 2Ideal R · ˙ = J
58 2 57 syl φ · ˙ = J
59 7 a1i φ 1 ˙ = 1 J
60 eqidd φ A = A
61 58 59 60 oveq123d φ 1 ˙ · ˙ A = 1 J J A
62 61 eqeq1d φ 1 ˙ · ˙ A = 0 J 1 J J A = 0 J
63 3 17 subg0 I SubGrp R 0 R = 0 J
64 30 63 syl φ 0 R = 0 J
65 64 eqeq2d φ A = 0 R A = 0 J
66 62 65 imbi12d φ 1 ˙ · ˙ A = 0 J A = 0 R 1 J J A = 0 J A = 0 J
67 53 56 66 3imtr4d φ A I 1 ˙ · ˙ A = 0 J A = 0 R
68 67 adantr φ A B A I 1 ˙ · ˙ A = 0 J A = 0 R
69 44 68 sylbid φ A B A - R 0 R I 1 ˙ · ˙ A = 0 J A = 0 R
70 39 69 sylbid φ A B A ˙ = 0 Q 1 ˙ · ˙ A = 0 J A = 0 R
71 70 impd φ A B A ˙ = 0 Q 1 ˙ · ˙ A = 0 J A = 0 R