Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|
2 |
|
rng2idlring.i |
|
3 |
|
rng2idlring.j |
|
4 |
|
rng2idlring.u |
|
5 |
|
rng2idlring.b |
|
6 |
|
rng2idlring.t |
|
7 |
|
rng2idlring.1 |
|
8 |
|
rngqiprngim.g |
|
9 |
|
rngqiprngim.q |
|
10 |
|
ringrng |
|
11 |
4 10
|
syl |
|
12 |
3 11
|
eqeltrrid |
|
13 |
1 2 12
|
rng2idlnsg |
|
14 |
13
|
adantr |
|
15 |
8
|
oveq2i |
|
16 |
9 15
|
eqtri |
|
17 |
|
eqid |
|
18 |
16 17
|
qus0 |
|
19 |
14 18
|
syl |
|
20 |
19
|
eqcomd |
|
21 |
20
|
eqeq2d |
|
22 |
8
|
eqcomi |
|
23 |
22
|
eceq2i |
|
24 |
23
|
a1i |
|
25 |
24
|
eqeq2d |
|
26 |
|
eqcom |
|
27 |
|
rngabl |
|
28 |
1 27
|
syl |
|
29 |
|
nsgsubg |
|
30 |
13 29
|
syl |
|
31 |
28 30
|
jca |
|
32 |
5 17
|
rng0cl |
|
33 |
1 32
|
syl |
|
34 |
33
|
anim1i |
|
35 |
|
eqid |
|
36 |
5 35 8
|
qusecsub |
|
37 |
31 34 36
|
syl2an2r |
|
38 |
26 37
|
bitrid |
|
39 |
21 25 38
|
3bitrd |
|
40 |
|
rnggrp |
|
41 |
1 40
|
syl |
|
42 |
5 17 35
|
grpsubid1 |
|
43 |
41 42
|
sylan |
|
44 |
43
|
eleq1d |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
|
eqid |
|
48 |
4
|
adantr |
|
49 |
|
simpr |
|
50 |
|
eqid |
|
51 |
45 46 47 48 49 50
|
ring1nzdiv |
|
52 |
51
|
biimpd |
|
53 |
52
|
ex |
|
54 |
2 3 45
|
2idlbas |
|
55 |
54
|
eqcomd |
|
56 |
55
|
eleq2d |
|
57 |
3 6
|
ressmulr |
|
58 |
2 57
|
syl |
|
59 |
7
|
a1i |
|
60 |
|
eqidd |
|
61 |
58 59 60
|
oveq123d |
|
62 |
61
|
eqeq1d |
|
63 |
3 17
|
subg0 |
|
64 |
30 63
|
syl |
|
65 |
64
|
eqeq2d |
|
66 |
62 65
|
imbi12d |
|
67 |
53 56 66
|
3imtr4d |
|
68 |
67
|
adantr |
|
69 |
44 68
|
sylbid |
|
70 |
39 69
|
sylbid |
|
71 |
70
|
impd |
|