| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rng2idlring.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 3 |  | rng2idlring.j | ⊢ 𝐽  =  ( 𝑅  ↾s  𝐼 ) | 
						
							| 4 |  | rng2idlring.u | ⊢ ( 𝜑  →  𝐽  ∈  Ring ) | 
						
							| 5 |  | rng2idlring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | rng2idlring.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 7 |  | rng2idlring.1 | ⊢  1   =  ( 1r ‘ 𝐽 ) | 
						
							| 8 |  | rngqiprngim.g | ⊢  ∼   =  ( 𝑅  ~QG  𝐼 ) | 
						
							| 9 |  | rngqiprngim.q | ⊢ 𝑄  =  ( 𝑅  /s   ∼  ) | 
						
							| 10 |  | ringrng | ⊢ ( 𝐽  ∈  Ring  →  𝐽  ∈  Rng ) | 
						
							| 11 | 4 10 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Rng ) | 
						
							| 12 | 3 11 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝐼 )  ∈  Rng ) | 
						
							| 13 | 1 2 12 | rng2idlnsg | ⊢ ( 𝜑  →  𝐼  ∈  ( NrmSGrp ‘ 𝑅 ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  𝐼  ∈  ( NrmSGrp ‘ 𝑅 ) ) | 
						
							| 15 | 8 | oveq2i | ⊢ ( 𝑅  /s   ∼  )  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 16 | 9 15 | eqtri | ⊢ 𝑄  =  ( 𝑅  /s  ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 17 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 18 | 16 17 | qus0 | ⊢ ( 𝐼  ∈  ( NrmSGrp ‘ 𝑅 )  →  [ ( 0g ‘ 𝑅 ) ] ( 𝑅  ~QG  𝐼 )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 19 | 14 18 | syl | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  [ ( 0g ‘ 𝑅 ) ] ( 𝑅  ~QG  𝐼 )  =  ( 0g ‘ 𝑄 ) ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( 0g ‘ 𝑄 )  =  [ ( 0g ‘ 𝑅 ) ] ( 𝑅  ~QG  𝐼 ) ) | 
						
							| 21 | 20 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( [ 𝐴 ]  ∼   =  ( 0g ‘ 𝑄 )  ↔  [ 𝐴 ]  ∼   =  [ ( 0g ‘ 𝑅 ) ] ( 𝑅  ~QG  𝐼 ) ) ) | 
						
							| 22 | 8 | eqcomi | ⊢ ( 𝑅  ~QG  𝐼 )  =   ∼ | 
						
							| 23 | 22 | eceq2i | ⊢ [ ( 0g ‘ 𝑅 ) ] ( 𝑅  ~QG  𝐼 )  =  [ ( 0g ‘ 𝑅 ) ]  ∼ | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  [ ( 0g ‘ 𝑅 ) ] ( 𝑅  ~QG  𝐼 )  =  [ ( 0g ‘ 𝑅 ) ]  ∼  ) | 
						
							| 25 | 24 | eqeq2d | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( [ 𝐴 ]  ∼   =  [ ( 0g ‘ 𝑅 ) ] ( 𝑅  ~QG  𝐼 )  ↔  [ 𝐴 ]  ∼   =  [ ( 0g ‘ 𝑅 ) ]  ∼  ) ) | 
						
							| 26 |  | eqcom | ⊢ ( [ 𝐴 ]  ∼   =  [ ( 0g ‘ 𝑅 ) ]  ∼   ↔  [ ( 0g ‘ 𝑅 ) ]  ∼   =  [ 𝐴 ]  ∼  ) | 
						
							| 27 |  | rngabl | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Abel ) | 
						
							| 28 | 1 27 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Abel ) | 
						
							| 29 |  | nsgsubg | ⊢ ( 𝐼  ∈  ( NrmSGrp ‘ 𝑅 )  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 30 | 13 29 | syl | ⊢ ( 𝜑  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 31 | 28 30 | jca | ⊢ ( 𝜑  →  ( 𝑅  ∈  Abel  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) ) | 
						
							| 32 | 5 17 | rng0cl | ⊢ ( 𝑅  ∈  Rng  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 33 | 1 32 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 34 | 33 | anim1i | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( ( 0g ‘ 𝑅 )  ∈  𝐵  ∧  𝐴  ∈  𝐵 ) ) | 
						
							| 35 |  | eqid | ⊢ ( -g ‘ 𝑅 )  =  ( -g ‘ 𝑅 ) | 
						
							| 36 | 5 35 8 | qusecsub | ⊢ ( ( ( 𝑅  ∈  Abel  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( ( 0g ‘ 𝑅 )  ∈  𝐵  ∧  𝐴  ∈  𝐵 ) )  →  ( [ ( 0g ‘ 𝑅 ) ]  ∼   =  [ 𝐴 ]  ∼   ↔  ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  ∈  𝐼 ) ) | 
						
							| 37 | 31 34 36 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( [ ( 0g ‘ 𝑅 ) ]  ∼   =  [ 𝐴 ]  ∼   ↔  ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  ∈  𝐼 ) ) | 
						
							| 38 | 26 37 | bitrid | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( [ 𝐴 ]  ∼   =  [ ( 0g ‘ 𝑅 ) ]  ∼   ↔  ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  ∈  𝐼 ) ) | 
						
							| 39 | 21 25 38 | 3bitrd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( [ 𝐴 ]  ∼   =  ( 0g ‘ 𝑄 )  ↔  ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  ∈  𝐼 ) ) | 
						
							| 40 |  | rnggrp | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp ) | 
						
							| 41 | 1 40 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 42 | 5 17 35 | grpsubid1 | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  =  𝐴 ) | 
						
							| 43 | 41 42 | sylan | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  =  𝐴 ) | 
						
							| 44 | 43 | eleq1d | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  ∈  𝐼  ↔  𝐴  ∈  𝐼 ) ) | 
						
							| 45 |  | eqid | ⊢ ( Base ‘ 𝐽 )  =  ( Base ‘ 𝐽 ) | 
						
							| 46 |  | eqid | ⊢ ( 0g ‘ 𝐽 )  =  ( 0g ‘ 𝐽 ) | 
						
							| 47 |  | eqid | ⊢ ( .r ‘ 𝐽 )  =  ( .r ‘ 𝐽 ) | 
						
							| 48 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( Base ‘ 𝐽 ) )  →  𝐽  ∈  Ring ) | 
						
							| 49 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( Base ‘ 𝐽 ) )  →  𝐴  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 50 |  | eqid | ⊢ ( 1r ‘ 𝐽 )  =  ( 1r ‘ 𝐽 ) | 
						
							| 51 | 45 46 47 48 49 50 | ring1nzdiv | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( Base ‘ 𝐽 ) )  →  ( ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 )  =  ( 0g ‘ 𝐽 )  ↔  𝐴  =  ( 0g ‘ 𝐽 ) ) ) | 
						
							| 52 | 51 | biimpd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  ( Base ‘ 𝐽 ) )  →  ( ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 )  =  ( 0g ‘ 𝐽 )  →  𝐴  =  ( 0g ‘ 𝐽 ) ) ) | 
						
							| 53 | 52 | ex | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( Base ‘ 𝐽 )  →  ( ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 )  =  ( 0g ‘ 𝐽 )  →  𝐴  =  ( 0g ‘ 𝐽 ) ) ) ) | 
						
							| 54 | 2 3 45 | 2idlbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐽 )  =  𝐼 ) | 
						
							| 55 | 54 | eqcomd | ⊢ ( 𝜑  →  𝐼  =  ( Base ‘ 𝐽 ) ) | 
						
							| 56 | 55 | eleq2d | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝐼  ↔  𝐴  ∈  ( Base ‘ 𝐽 ) ) ) | 
						
							| 57 | 3 6 | ressmulr | ⊢ ( 𝐼  ∈  ( 2Ideal ‘ 𝑅 )  →   ·   =  ( .r ‘ 𝐽 ) ) | 
						
							| 58 | 2 57 | syl | ⊢ ( 𝜑  →   ·   =  ( .r ‘ 𝐽 ) ) | 
						
							| 59 | 7 | a1i | ⊢ ( 𝜑  →   1   =  ( 1r ‘ 𝐽 ) ) | 
						
							| 60 |  | eqidd | ⊢ ( 𝜑  →  𝐴  =  𝐴 ) | 
						
							| 61 | 58 59 60 | oveq123d | ⊢ ( 𝜑  →  (  1   ·  𝐴 )  =  ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 ) ) | 
						
							| 62 | 61 | eqeq1d | ⊢ ( 𝜑  →  ( (  1   ·  𝐴 )  =  ( 0g ‘ 𝐽 )  ↔  ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 )  =  ( 0g ‘ 𝐽 ) ) ) | 
						
							| 63 | 3 17 | subg0 | ⊢ ( 𝐼  ∈  ( SubGrp ‘ 𝑅 )  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝐽 ) ) | 
						
							| 64 | 30 63 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝐽 ) ) | 
						
							| 65 | 64 | eqeq2d | ⊢ ( 𝜑  →  ( 𝐴  =  ( 0g ‘ 𝑅 )  ↔  𝐴  =  ( 0g ‘ 𝐽 ) ) ) | 
						
							| 66 | 62 65 | imbi12d | ⊢ ( 𝜑  →  ( ( (  1   ·  𝐴 )  =  ( 0g ‘ 𝐽 )  →  𝐴  =  ( 0g ‘ 𝑅 ) )  ↔  ( ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 )  =  ( 0g ‘ 𝐽 )  →  𝐴  =  ( 0g ‘ 𝐽 ) ) ) ) | 
						
							| 67 | 53 56 66 | 3imtr4d | ⊢ ( 𝜑  →  ( 𝐴  ∈  𝐼  →  ( (  1   ·  𝐴 )  =  ( 0g ‘ 𝐽 )  →  𝐴  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ∈  𝐼  →  ( (  1   ·  𝐴 )  =  ( 0g ‘ 𝐽 )  →  𝐴  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 69 | 44 68 | sylbid | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) )  ∈  𝐼  →  ( (  1   ·  𝐴 )  =  ( 0g ‘ 𝐽 )  →  𝐴  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 70 | 39 69 | sylbid | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( [ 𝐴 ]  ∼   =  ( 0g ‘ 𝑄 )  →  ( (  1   ·  𝐴 )  =  ( 0g ‘ 𝐽 )  →  𝐴  =  ( 0g ‘ 𝑅 ) ) ) ) | 
						
							| 71 | 70 | impd | ⊢ ( ( 𝜑  ∧  𝐴  ∈  𝐵 )  →  ( ( [ 𝐴 ]  ∼   =  ( 0g ‘ 𝑄 )  ∧  (  1   ·  𝐴 )  =  ( 0g ‘ 𝐽 ) )  →  𝐴  =  ( 0g ‘ 𝑅 ) ) ) |