Metamath Proof Explorer


Theorem rngqiprngimf1lem

Description: Lemma for rngqiprngimf1 . (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
rngqiprngim.q 𝑄 = ( 𝑅 /s )
Assertion rngqiprngimf1lem ( ( 𝜑𝐴𝐵 ) → ( ( [ 𝐴 ] = ( 0g𝑄 ) ∧ ( 1 · 𝐴 ) = ( 0g𝐽 ) ) → 𝐴 = ( 0g𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngim.q 𝑄 = ( 𝑅 /s )
10 ringrng ( 𝐽 ∈ Ring → 𝐽 ∈ Rng )
11 4 10 syl ( 𝜑𝐽 ∈ Rng )
12 3 11 eqeltrrid ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
13 1 2 12 rng2idlnsg ( 𝜑𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
14 13 adantr ( ( 𝜑𝐴𝐵 ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
15 8 oveq2i ( 𝑅 /s ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
16 9 15 eqtri 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
17 eqid ( 0g𝑅 ) = ( 0g𝑅 )
18 16 17 qus0 ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) )
19 14 18 syl ( ( 𝜑𝐴𝐵 ) → [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) )
20 19 eqcomd ( ( 𝜑𝐴𝐵 ) → ( 0g𝑄 ) = [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) )
21 20 eqeq2d ( ( 𝜑𝐴𝐵 ) → ( [ 𝐴 ] = ( 0g𝑄 ) ↔ [ 𝐴 ] = [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ) )
22 8 eqcomi ( 𝑅 ~QG 𝐼 ) =
23 22 eceq2i [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 0g𝑅 ) ]
24 23 a1i ( ( 𝜑𝐴𝐵 ) → [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 0g𝑅 ) ] )
25 24 eqeq2d ( ( 𝜑𝐴𝐵 ) → ( [ 𝐴 ] = [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ↔ [ 𝐴 ] = [ ( 0g𝑅 ) ] ) )
26 eqcom ( [ 𝐴 ] = [ ( 0g𝑅 ) ] ↔ [ ( 0g𝑅 ) ] = [ 𝐴 ] )
27 rngabl ( 𝑅 ∈ Rng → 𝑅 ∈ Abel )
28 1 27 syl ( 𝜑𝑅 ∈ Abel )
29 nsgsubg ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
30 13 29 syl ( 𝜑𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
31 28 30 jca ( 𝜑 → ( 𝑅 ∈ Abel ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) )
32 5 17 rng0cl ( 𝑅 ∈ Rng → ( 0g𝑅 ) ∈ 𝐵 )
33 1 32 syl ( 𝜑 → ( 0g𝑅 ) ∈ 𝐵 )
34 33 anim1i ( ( 𝜑𝐴𝐵 ) → ( ( 0g𝑅 ) ∈ 𝐵𝐴𝐵 ) )
35 eqid ( -g𝑅 ) = ( -g𝑅 )
36 5 35 8 qusecsub ( ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( ( 0g𝑅 ) ∈ 𝐵𝐴𝐵 ) ) → ( [ ( 0g𝑅 ) ] = [ 𝐴 ] ↔ ( 𝐴 ( -g𝑅 ) ( 0g𝑅 ) ) ∈ 𝐼 ) )
37 31 34 36 syl2an2r ( ( 𝜑𝐴𝐵 ) → ( [ ( 0g𝑅 ) ] = [ 𝐴 ] ↔ ( 𝐴 ( -g𝑅 ) ( 0g𝑅 ) ) ∈ 𝐼 ) )
38 26 37 bitrid ( ( 𝜑𝐴𝐵 ) → ( [ 𝐴 ] = [ ( 0g𝑅 ) ] ↔ ( 𝐴 ( -g𝑅 ) ( 0g𝑅 ) ) ∈ 𝐼 ) )
39 21 25 38 3bitrd ( ( 𝜑𝐴𝐵 ) → ( [ 𝐴 ] = ( 0g𝑄 ) ↔ ( 𝐴 ( -g𝑅 ) ( 0g𝑅 ) ) ∈ 𝐼 ) )
40 rnggrp ( 𝑅 ∈ Rng → 𝑅 ∈ Grp )
41 1 40 syl ( 𝜑𝑅 ∈ Grp )
42 5 17 35 grpsubid1 ( ( 𝑅 ∈ Grp ∧ 𝐴𝐵 ) → ( 𝐴 ( -g𝑅 ) ( 0g𝑅 ) ) = 𝐴 )
43 41 42 sylan ( ( 𝜑𝐴𝐵 ) → ( 𝐴 ( -g𝑅 ) ( 0g𝑅 ) ) = 𝐴 )
44 43 eleq1d ( ( 𝜑𝐴𝐵 ) → ( ( 𝐴 ( -g𝑅 ) ( 0g𝑅 ) ) ∈ 𝐼𝐴𝐼 ) )
45 eqid ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 )
46 eqid ( 0g𝐽 ) = ( 0g𝐽 )
47 eqid ( .r𝐽 ) = ( .r𝐽 )
48 4 adantr ( ( 𝜑𝐴 ∈ ( Base ‘ 𝐽 ) ) → 𝐽 ∈ Ring )
49 simpr ( ( 𝜑𝐴 ∈ ( Base ‘ 𝐽 ) ) → 𝐴 ∈ ( Base ‘ 𝐽 ) )
50 eqid ( 1r𝐽 ) = ( 1r𝐽 )
51 45 46 47 48 49 50 ring1nzdiv ( ( 𝜑𝐴 ∈ ( Base ‘ 𝐽 ) ) → ( ( ( 1r𝐽 ) ( .r𝐽 ) 𝐴 ) = ( 0g𝐽 ) ↔ 𝐴 = ( 0g𝐽 ) ) )
52 51 biimpd ( ( 𝜑𝐴 ∈ ( Base ‘ 𝐽 ) ) → ( ( ( 1r𝐽 ) ( .r𝐽 ) 𝐴 ) = ( 0g𝐽 ) → 𝐴 = ( 0g𝐽 ) ) )
53 52 ex ( 𝜑 → ( 𝐴 ∈ ( Base ‘ 𝐽 ) → ( ( ( 1r𝐽 ) ( .r𝐽 ) 𝐴 ) = ( 0g𝐽 ) → 𝐴 = ( 0g𝐽 ) ) ) )
54 2 3 45 2idlbas ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 )
55 54 eqcomd ( 𝜑𝐼 = ( Base ‘ 𝐽 ) )
56 55 eleq2d ( 𝜑 → ( 𝐴𝐼𝐴 ∈ ( Base ‘ 𝐽 ) ) )
57 3 6 ressmulr ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → · = ( .r𝐽 ) )
58 2 57 syl ( 𝜑· = ( .r𝐽 ) )
59 7 a1i ( 𝜑1 = ( 1r𝐽 ) )
60 eqidd ( 𝜑𝐴 = 𝐴 )
61 58 59 60 oveq123d ( 𝜑 → ( 1 · 𝐴 ) = ( ( 1r𝐽 ) ( .r𝐽 ) 𝐴 ) )
62 61 eqeq1d ( 𝜑 → ( ( 1 · 𝐴 ) = ( 0g𝐽 ) ↔ ( ( 1r𝐽 ) ( .r𝐽 ) 𝐴 ) = ( 0g𝐽 ) ) )
63 3 17 subg0 ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g𝑅 ) = ( 0g𝐽 ) )
64 30 63 syl ( 𝜑 → ( 0g𝑅 ) = ( 0g𝐽 ) )
65 64 eqeq2d ( 𝜑 → ( 𝐴 = ( 0g𝑅 ) ↔ 𝐴 = ( 0g𝐽 ) ) )
66 62 65 imbi12d ( 𝜑 → ( ( ( 1 · 𝐴 ) = ( 0g𝐽 ) → 𝐴 = ( 0g𝑅 ) ) ↔ ( ( ( 1r𝐽 ) ( .r𝐽 ) 𝐴 ) = ( 0g𝐽 ) → 𝐴 = ( 0g𝐽 ) ) ) )
67 53 56 66 3imtr4d ( 𝜑 → ( 𝐴𝐼 → ( ( 1 · 𝐴 ) = ( 0g𝐽 ) → 𝐴 = ( 0g𝑅 ) ) ) )
68 67 adantr ( ( 𝜑𝐴𝐵 ) → ( 𝐴𝐼 → ( ( 1 · 𝐴 ) = ( 0g𝐽 ) → 𝐴 = ( 0g𝑅 ) ) ) )
69 44 68 sylbid ( ( 𝜑𝐴𝐵 ) → ( ( 𝐴 ( -g𝑅 ) ( 0g𝑅 ) ) ∈ 𝐼 → ( ( 1 · 𝐴 ) = ( 0g𝐽 ) → 𝐴 = ( 0g𝑅 ) ) ) )
70 39 69 sylbid ( ( 𝜑𝐴𝐵 ) → ( [ 𝐴 ] = ( 0g𝑄 ) → ( ( 1 · 𝐴 ) = ( 0g𝐽 ) → 𝐴 = ( 0g𝑅 ) ) ) )
71 70 impd ( ( 𝜑𝐴𝐵 ) → ( ( [ 𝐴 ] = ( 0g𝑄 ) ∧ ( 1 · 𝐴 ) = ( 0g𝐽 ) ) → 𝐴 = ( 0g𝑅 ) ) )