Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
11 |
4 10
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
12 |
3 11
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
13 |
1 2 12
|
rng2idlnsg |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
15 |
8
|
oveq2i |
⊢ ( 𝑅 /s ∼ ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
16 |
9 15
|
eqtri |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
17 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
18 |
16 17
|
qus0 |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
19 |
14 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
20 |
19
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( 0g ‘ 𝑄 ) = [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ) |
21 |
20
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( [ 𝐴 ] ∼ = ( 0g ‘ 𝑄 ) ↔ [ 𝐴 ] ∼ = [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ) ) |
22 |
8
|
eqcomi |
⊢ ( 𝑅 ~QG 𝐼 ) = ∼ |
23 |
22
|
eceq2i |
⊢ [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 0g ‘ 𝑅 ) ] ∼ |
24 |
23
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = [ ( 0g ‘ 𝑅 ) ] ∼ ) |
25 |
24
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( [ 𝐴 ] ∼ = [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) ↔ [ 𝐴 ] ∼ = [ ( 0g ‘ 𝑅 ) ] ∼ ) ) |
26 |
|
eqcom |
⊢ ( [ 𝐴 ] ∼ = [ ( 0g ‘ 𝑅 ) ] ∼ ↔ [ ( 0g ‘ 𝑅 ) ] ∼ = [ 𝐴 ] ∼ ) |
27 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
28 |
1 27
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Abel ) |
29 |
|
nsgsubg |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
30 |
13 29
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
31 |
28 30
|
jca |
⊢ ( 𝜑 → ( 𝑅 ∈ Abel ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ) |
32 |
5 17
|
rng0cl |
⊢ ( 𝑅 ∈ Rng → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
33 |
1 32
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
34 |
33
|
anim1i |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ) |
35 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
36 |
5 35 8
|
qusecsub |
⊢ ( ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( ( 0g ‘ 𝑅 ) ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) ) → ( [ ( 0g ‘ 𝑅 ) ] ∼ = [ 𝐴 ] ∼ ↔ ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ∈ 𝐼 ) ) |
37 |
31 34 36
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( [ ( 0g ‘ 𝑅 ) ] ∼ = [ 𝐴 ] ∼ ↔ ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ∈ 𝐼 ) ) |
38 |
26 37
|
bitrid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( [ 𝐴 ] ∼ = [ ( 0g ‘ 𝑅 ) ] ∼ ↔ ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ∈ 𝐼 ) ) |
39 |
21 25 38
|
3bitrd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( [ 𝐴 ] ∼ = ( 0g ‘ 𝑄 ) ↔ ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ∈ 𝐼 ) ) |
40 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
41 |
1 40
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
42 |
5 17 35
|
grpsubid1 |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝐴 ) |
43 |
41 42
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = 𝐴 ) |
44 |
43
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ∈ 𝐼 ↔ 𝐴 ∈ 𝐼 ) ) |
45 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
46 |
|
eqid |
⊢ ( 0g ‘ 𝐽 ) = ( 0g ‘ 𝐽 ) |
47 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
48 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( Base ‘ 𝐽 ) ) → 𝐽 ∈ Ring ) |
49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( Base ‘ 𝐽 ) ) → 𝐴 ∈ ( Base ‘ 𝐽 ) ) |
50 |
|
eqid |
⊢ ( 1r ‘ 𝐽 ) = ( 1r ‘ 𝐽 ) |
51 |
45 46 47 48 49 50
|
ring1nzdiv |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( Base ‘ 𝐽 ) ) → ( ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 ) = ( 0g ‘ 𝐽 ) ↔ 𝐴 = ( 0g ‘ 𝐽 ) ) ) |
52 |
51
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ ( Base ‘ 𝐽 ) ) → ( ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 ) = ( 0g ‘ 𝐽 ) → 𝐴 = ( 0g ‘ 𝐽 ) ) ) |
53 |
52
|
ex |
⊢ ( 𝜑 → ( 𝐴 ∈ ( Base ‘ 𝐽 ) → ( ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 ) = ( 0g ‘ 𝐽 ) → 𝐴 = ( 0g ‘ 𝐽 ) ) ) ) |
54 |
2 3 45
|
2idlbas |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 ) |
55 |
54
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( Base ‘ 𝐽 ) ) |
56 |
55
|
eleq2d |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝐼 ↔ 𝐴 ∈ ( Base ‘ 𝐽 ) ) ) |
57 |
3 6
|
ressmulr |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → · = ( .r ‘ 𝐽 ) ) |
58 |
2 57
|
syl |
⊢ ( 𝜑 → · = ( .r ‘ 𝐽 ) ) |
59 |
7
|
a1i |
⊢ ( 𝜑 → 1 = ( 1r ‘ 𝐽 ) ) |
60 |
|
eqidd |
⊢ ( 𝜑 → 𝐴 = 𝐴 ) |
61 |
58 59 60
|
oveq123d |
⊢ ( 𝜑 → ( 1 · 𝐴 ) = ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 ) ) |
62 |
61
|
eqeq1d |
⊢ ( 𝜑 → ( ( 1 · 𝐴 ) = ( 0g ‘ 𝐽 ) ↔ ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 ) = ( 0g ‘ 𝐽 ) ) ) |
63 |
3 17
|
subg0 |
⊢ ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐽 ) ) |
64 |
30 63
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐽 ) ) |
65 |
64
|
eqeq2d |
⊢ ( 𝜑 → ( 𝐴 = ( 0g ‘ 𝑅 ) ↔ 𝐴 = ( 0g ‘ 𝐽 ) ) ) |
66 |
62 65
|
imbi12d |
⊢ ( 𝜑 → ( ( ( 1 · 𝐴 ) = ( 0g ‘ 𝐽 ) → 𝐴 = ( 0g ‘ 𝑅 ) ) ↔ ( ( ( 1r ‘ 𝐽 ) ( .r ‘ 𝐽 ) 𝐴 ) = ( 0g ‘ 𝐽 ) → 𝐴 = ( 0g ‘ 𝐽 ) ) ) ) |
67 |
53 56 66
|
3imtr4d |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝐼 → ( ( 1 · 𝐴 ) = ( 0g ‘ 𝐽 ) → 𝐴 = ( 0g ‘ 𝑅 ) ) ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ∈ 𝐼 → ( ( 1 · 𝐴 ) = ( 0g ‘ 𝐽 ) → 𝐴 = ( 0g ‘ 𝑅 ) ) ) ) |
69 |
44 68
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝐴 ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ∈ 𝐼 → ( ( 1 · 𝐴 ) = ( 0g ‘ 𝐽 ) → 𝐴 = ( 0g ‘ 𝑅 ) ) ) ) |
70 |
39 69
|
sylbid |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( [ 𝐴 ] ∼ = ( 0g ‘ 𝑄 ) → ( ( 1 · 𝐴 ) = ( 0g ‘ 𝐽 ) → 𝐴 = ( 0g ‘ 𝑅 ) ) ) ) |
71 |
70
|
impd |
⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝐵 ) → ( ( [ 𝐴 ] ∼ = ( 0g ‘ 𝑄 ) ∧ ( 1 · 𝐴 ) = ( 0g ‘ 𝐽 ) ) → 𝐴 = ( 0g ‘ 𝑅 ) ) ) |