| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rng2idlring.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 3 |  | rng2idlring.j | ⊢ 𝐽  =  ( 𝑅  ↾s  𝐼 ) | 
						
							| 4 |  | rng2idlring.u | ⊢ ( 𝜑  →  𝐽  ∈  Ring ) | 
						
							| 5 |  | rng2idlring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | rng2idlring.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 7 |  | rng2idlring.1 | ⊢  1   =  ( 1r ‘ 𝐽 ) | 
						
							| 8 |  | rngqiprngim.g | ⊢  ∼   =  ( 𝑅  ~QG  𝐼 ) | 
						
							| 9 |  | rngqiprngim.q | ⊢ 𝑄  =  ( 𝑅  /s   ∼  ) | 
						
							| 10 |  | rngqiprngim.c | ⊢ 𝐶  =  ( Base ‘ 𝑄 ) | 
						
							| 11 |  | rngqiprngim.p | ⊢ 𝑃  =  ( 𝑄  ×s  𝐽 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝐽 )  =  ( Base ‘ 𝐽 ) | 
						
							| 13 | 9 | ovexi | ⊢ 𝑄  ∈  V | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  𝑄  ∈  V ) | 
						
							| 15 | 11 10 12 14 4 | xpsbas | ⊢ ( 𝜑  →  ( 𝐶  ×  ( Base ‘ 𝐽 ) )  =  ( Base ‘ 𝑃 ) ) | 
						
							| 16 | 2 3 12 | 2idlbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐽 )  =  𝐼 ) | 
						
							| 17 | 16 | xpeq2d | ⊢ ( 𝜑  →  ( 𝐶  ×  ( Base ‘ 𝐽 ) )  =  ( 𝐶  ×  𝐼 ) ) | 
						
							| 18 | 15 17 | eqtr3d | ⊢ ( 𝜑  →  ( Base ‘ 𝑃 )  =  ( 𝐶  ×  𝐼 ) ) |