| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
| 4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
| 5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
| 8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
| 9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
| 10 |
|
rngqiprngim.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
| 11 |
|
rngqiprngim.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
| 13 |
9
|
ovexi |
⊢ 𝑄 ∈ V |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → 𝑄 ∈ V ) |
| 15 |
11 10 12 14 4
|
xpsbas |
⊢ ( 𝜑 → ( 𝐶 × ( Base ‘ 𝐽 ) ) = ( Base ‘ 𝑃 ) ) |
| 16 |
2 3 12
|
2idlbas |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 ) |
| 17 |
16
|
xpeq2d |
⊢ ( 𝜑 → ( 𝐶 × ( Base ‘ 𝐽 ) ) = ( 𝐶 × 𝐼 ) ) |
| 18 |
15 17
|
eqtr3d |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( 𝐶 × 𝐼 ) ) |