| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
| 2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
| 3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
| 4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
| 5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
| 7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
| 8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
| 9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
| 10 |
|
rngqiprngim.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
| 11 |
|
rngqiprngim.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
| 12 |
|
rngqiprngim.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) |
| 13 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
| 14 |
4 13
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
| 15 |
3 14
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
| 16 |
1 2 15
|
rng2idlnsg |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
| 17 |
|
nsgsubg |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 18 |
16 17
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 19 |
8
|
oveq2i |
⊢ ( 𝑅 /s ∼ ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 20 |
9 19
|
eqtri |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) ) |
| 21 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
| 22 |
20 21
|
qus2idrng |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑄 ∈ Rng ) |
| 23 |
1 2 18 22
|
syl3anc |
⊢ ( 𝜑 → 𝑄 ∈ Rng ) |
| 24 |
|
rnggrp |
⊢ ( 𝑄 ∈ Rng → 𝑄 ∈ Grp ) |
| 25 |
24
|
grpmndd |
⊢ ( 𝑄 ∈ Rng → 𝑄 ∈ Mnd ) |
| 26 |
23 25
|
syl |
⊢ ( 𝜑 → 𝑄 ∈ Mnd ) |
| 27 |
|
ringmnd |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Mnd ) |
| 28 |
4 27
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Mnd ) |
| 29 |
11
|
xpsmnd0 |
⊢ ( ( 𝑄 ∈ Mnd ∧ 𝐽 ∈ Mnd ) → ( 0g ‘ 𝑃 ) = 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 ) |
| 30 |
26 28 29
|
syl2anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑃 ) = 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 ) |
| 31 |
30
|
sneqd |
⊢ ( 𝜑 → { ( 0g ‘ 𝑃 ) } = { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ) |
| 32 |
31
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 0g ‘ 𝑃 ) } ) = ( ◡ 𝐹 “ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ) ) |
| 33 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 34 |
|
opex |
⊢ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ∈ V |
| 35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ∈ V ) |
| 36 |
33 35 12
|
fnmptd |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
| 37 |
|
fncnvima2 |
⊢ ( 𝐹 Fn 𝐵 → ( ◡ 𝐹 “ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ) = { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } } ) |
| 38 |
36 37
|
syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ) = { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } } ) |
| 39 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) |
| 40 |
39
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ↔ 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ) ) |
| 41 |
40
|
rabbidva |
⊢ ( 𝜑 → { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } } = { 𝑎 ∈ 𝐵 ∣ 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } } ) |
| 42 |
|
eceq1 |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → [ 𝑎 ] ∼ = [ ( 0g ‘ 𝑅 ) ] ∼ ) |
| 43 |
|
oveq2 |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( 1 · 𝑎 ) = ( 1 · ( 0g ‘ 𝑅 ) ) ) |
| 44 |
42 43
|
opeq12d |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 = 〈 [ ( 0g ‘ 𝑅 ) ] ∼ , ( 1 · ( 0g ‘ 𝑅 ) ) 〉 ) |
| 45 |
44
|
eleq1d |
⊢ ( 𝑎 = ( 0g ‘ 𝑅 ) → ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ↔ 〈 [ ( 0g ‘ 𝑅 ) ] ∼ , ( 1 · ( 0g ‘ 𝑅 ) ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ) ) |
| 46 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
| 47 |
1 46
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 48 |
47
|
grpmndd |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 49 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 50 |
5 49
|
mndidcl |
⊢ ( 𝑅 ∈ Mnd → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 51 |
48 50
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 52 |
8
|
eceq2i |
⊢ [ ( 0g ‘ 𝑅 ) ] ∼ = [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) |
| 53 |
20 49
|
qus0 |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
| 54 |
16 53
|
syl |
⊢ ( 𝜑 → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g ‘ 𝑄 ) ) |
| 55 |
52 54
|
eqtrid |
⊢ ( 𝜑 → [ ( 0g ‘ 𝑅 ) ] ∼ = ( 0g ‘ 𝑄 ) ) |
| 56 |
1 2 15
|
rng2idl0 |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ 𝐼 ) |
| 57 |
5 21
|
2idlss |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
| 58 |
2 57
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
| 59 |
3 5 49
|
ress0g |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0g ‘ 𝑅 ) ∈ 𝐼 ∧ 𝐼 ⊆ 𝐵 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐽 ) ) |
| 60 |
48 56 58 59
|
syl3anc |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐽 ) ) |
| 61 |
60
|
oveq2d |
⊢ ( 𝜑 → ( 1 · ( 0g ‘ 𝑅 ) ) = ( 1 · ( 0g ‘ 𝐽 ) ) ) |
| 62 |
3 6
|
ressmulr |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → · = ( .r ‘ 𝐽 ) ) |
| 63 |
2 62
|
syl |
⊢ ( 𝜑 → · = ( .r ‘ 𝐽 ) ) |
| 64 |
63
|
oveqd |
⊢ ( 𝜑 → ( 1 · ( 0g ‘ 𝐽 ) ) = ( 1 ( .r ‘ 𝐽 ) ( 0g ‘ 𝐽 ) ) ) |
| 65 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
| 66 |
65 7
|
ringidcl |
⊢ ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) ) |
| 67 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
| 68 |
|
eqid |
⊢ ( 0g ‘ 𝐽 ) = ( 0g ‘ 𝐽 ) |
| 69 |
65 67 68
|
ringrz |
⊢ ( ( 𝐽 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝐽 ) ) → ( 1 ( .r ‘ 𝐽 ) ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐽 ) ) |
| 70 |
4 66 69
|
syl2anc2 |
⊢ ( 𝜑 → ( 1 ( .r ‘ 𝐽 ) ( 0g ‘ 𝐽 ) ) = ( 0g ‘ 𝐽 ) ) |
| 71 |
61 64 70
|
3eqtrd |
⊢ ( 𝜑 → ( 1 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝐽 ) ) |
| 72 |
55 71
|
opeq12d |
⊢ ( 𝜑 → 〈 [ ( 0g ‘ 𝑅 ) ] ∼ , ( 1 · ( 0g ‘ 𝑅 ) ) 〉 = 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 ) |
| 73 |
|
opex |
⊢ 〈 [ ( 0g ‘ 𝑅 ) ] ∼ , ( 1 · ( 0g ‘ 𝑅 ) ) 〉 ∈ V |
| 74 |
73
|
elsn |
⊢ ( 〈 [ ( 0g ‘ 𝑅 ) ] ∼ , ( 1 · ( 0g ‘ 𝑅 ) ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ↔ 〈 [ ( 0g ‘ 𝑅 ) ] ∼ , ( 1 · ( 0g ‘ 𝑅 ) ) 〉 = 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 ) |
| 75 |
72 74
|
sylibr |
⊢ ( 𝜑 → 〈 [ ( 0g ‘ 𝑅 ) ] ∼ , ( 1 · ( 0g ‘ 𝑅 ) ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ) |
| 76 |
|
opex |
⊢ 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ∈ V |
| 77 |
76
|
elsn |
⊢ ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ↔ 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 = 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 ) |
| 78 |
8
|
ovexi |
⊢ ∼ ∈ V |
| 79 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 𝑎 ] ∼ ∈ V ) |
| 80 |
78 79
|
ax-mp |
⊢ [ 𝑎 ] ∼ ∈ V |
| 81 |
|
ovex |
⊢ ( 1 · 𝑎 ) ∈ V |
| 82 |
80 81
|
opth |
⊢ ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 = 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 ↔ ( [ 𝑎 ] ∼ = ( 0g ‘ 𝑄 ) ∧ ( 1 · 𝑎 ) = ( 0g ‘ 𝐽 ) ) ) |
| 83 |
77 82
|
bitri |
⊢ ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ↔ ( [ 𝑎 ] ∼ = ( 0g ‘ 𝑄 ) ∧ ( 1 · 𝑎 ) = ( 0g ‘ 𝐽 ) ) ) |
| 84 |
1 2 3 4 5 6 7 8 9
|
rngqiprngimf1lem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( ( [ 𝑎 ] ∼ = ( 0g ‘ 𝑄 ) ∧ ( 1 · 𝑎 ) = ( 0g ‘ 𝐽 ) ) → 𝑎 = ( 0g ‘ 𝑅 ) ) ) |
| 85 |
83 84
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } → 𝑎 = ( 0g ‘ 𝑅 ) ) ) |
| 86 |
85
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) ∧ 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } ) → 𝑎 = ( 0g ‘ 𝑅 ) ) |
| 87 |
45 51 75 86
|
rabeqsnd |
⊢ ( 𝜑 → { 𝑎 ∈ 𝐵 ∣ 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } } = { ( 0g ‘ 𝑅 ) } ) |
| 88 |
41 87
|
eqtrd |
⊢ ( 𝜑 → { 𝑎 ∈ 𝐵 ∣ ( 𝐹 ‘ 𝑎 ) ∈ { 〈 ( 0g ‘ 𝑄 ) , ( 0g ‘ 𝐽 ) 〉 } } = { ( 0g ‘ 𝑅 ) } ) |
| 89 |
32 38 88
|
3eqtrd |
⊢ ( 𝜑 → ( ◡ 𝐹 “ { ( 0g ‘ 𝑃 ) } ) = { ( 0g ‘ 𝑅 ) } ) |
| 90 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngghm |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) ) |
| 91 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 92 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 93 |
5 91 49 92
|
kerf1ghm |
⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) → ( 𝐹 : 𝐵 –1-1→ ( Base ‘ 𝑃 ) ↔ ( ◡ 𝐹 “ { ( 0g ‘ 𝑃 ) } ) = { ( 0g ‘ 𝑅 ) } ) ) |
| 94 |
90 93
|
syl |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ ( Base ‘ 𝑃 ) ↔ ( ◡ 𝐹 “ { ( 0g ‘ 𝑃 ) } ) = { ( 0g ‘ 𝑅 ) } ) ) |
| 95 |
89 94
|
mpbird |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ ( Base ‘ 𝑃 ) ) |
| 96 |
|
eqidd |
⊢ ( 𝜑 → 𝐹 = 𝐹 ) |
| 97 |
|
eqidd |
⊢ ( 𝜑 → 𝐵 = 𝐵 ) |
| 98 |
1 2 3 4 5 6 7 8 9 10 11
|
rngqipbas |
⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( 𝐶 × 𝐼 ) ) |
| 99 |
96 97 98
|
f1eq123d |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 –1-1→ ( Base ‘ 𝑃 ) ↔ 𝐹 : 𝐵 –1-1→ ( 𝐶 × 𝐼 ) ) ) |
| 100 |
95 99
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1→ ( 𝐶 × 𝐼 ) ) |