Metamath Proof Explorer


Theorem rngqiprngimf1

Description: F is a one-to-one function from (the base set of) a non-unital ring to the product of the (base set of the) quotient with a two-sided ideal and the (base set of the) two-sided ideal. (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r ( 𝜑𝑅 ∈ Rng )
rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
rng2idlring.u ( 𝜑𝐽 ∈ Ring )
rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
rng2idlring.t · = ( .r𝑅 )
rng2idlring.1 1 = ( 1r𝐽 )
rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
rngqiprngim.q 𝑄 = ( 𝑅 /s )
rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
Assertion rngqiprngimf1 ( 𝜑𝐹 : 𝐵1-1→ ( 𝐶 × 𝐼 ) )

Proof

Step Hyp Ref Expression
1 rng2idlring.r ( 𝜑𝑅 ∈ Rng )
2 rng2idlring.i ( 𝜑𝐼 ∈ ( 2Ideal ‘ 𝑅 ) )
3 rng2idlring.j 𝐽 = ( 𝑅s 𝐼 )
4 rng2idlring.u ( 𝜑𝐽 ∈ Ring )
5 rng2idlring.b 𝐵 = ( Base ‘ 𝑅 )
6 rng2idlring.t · = ( .r𝑅 )
7 rng2idlring.1 1 = ( 1r𝐽 )
8 rngqiprngim.g = ( 𝑅 ~QG 𝐼 )
9 rngqiprngim.q 𝑄 = ( 𝑅 /s )
10 rngqiprngim.c 𝐶 = ( Base ‘ 𝑄 )
11 rngqiprngim.p 𝑃 = ( 𝑄 ×s 𝐽 )
12 rngqiprngim.f 𝐹 = ( 𝑥𝐵 ↦ ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ )
13 ringrng ( 𝐽 ∈ Ring → 𝐽 ∈ Rng )
14 4 13 syl ( 𝜑𝐽 ∈ Rng )
15 3 14 eqeltrrid ( 𝜑 → ( 𝑅s 𝐼 ) ∈ Rng )
16 1 2 15 rng2idlnsg ( 𝜑𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) )
17 nsgsubg ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
18 16 17 syl ( 𝜑𝐼 ∈ ( SubGrp ‘ 𝑅 ) )
19 8 oveq2i ( 𝑅 /s ) = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
20 9 19 eqtri 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝐼 ) )
21 eqid ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 )
22 20 21 qus2idrng ( ( 𝑅 ∈ Rng ∧ 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) → 𝑄 ∈ Rng )
23 1 2 18 22 syl3anc ( 𝜑𝑄 ∈ Rng )
24 rnggrp ( 𝑄 ∈ Rng → 𝑄 ∈ Grp )
25 24 grpmndd ( 𝑄 ∈ Rng → 𝑄 ∈ Mnd )
26 23 25 syl ( 𝜑𝑄 ∈ Mnd )
27 ringmnd ( 𝐽 ∈ Ring → 𝐽 ∈ Mnd )
28 4 27 syl ( 𝜑𝐽 ∈ Mnd )
29 11 xpsmnd0 ( ( 𝑄 ∈ Mnd ∧ 𝐽 ∈ Mnd ) → ( 0g𝑃 ) = ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ )
30 26 28 29 syl2anc ( 𝜑 → ( 0g𝑃 ) = ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ )
31 30 sneqd ( 𝜑 → { ( 0g𝑃 ) } = { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } )
32 31 imaeq2d ( 𝜑 → ( 𝐹 “ { ( 0g𝑃 ) } ) = ( 𝐹 “ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ) )
33 nfv 𝑥 𝜑
34 opex ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ∈ V
35 34 a1i ( ( 𝜑𝑥𝐵 ) → ⟨ [ 𝑥 ] , ( 1 · 𝑥 ) ⟩ ∈ V )
36 33 35 12 fnmptd ( 𝜑𝐹 Fn 𝐵 )
37 fncnvima2 ( 𝐹 Fn 𝐵 → ( 𝐹 “ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ) = { 𝑎𝐵 ∣ ( 𝐹𝑎 ) ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } } )
38 36 37 syl ( 𝜑 → ( 𝐹 “ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ) = { 𝑎𝐵 ∣ ( 𝐹𝑎 ) ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } } )
39 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv ( ( 𝜑𝑎𝐵 ) → ( 𝐹𝑎 ) = ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ )
40 39 eleq1d ( ( 𝜑𝑎𝐵 ) → ( ( 𝐹𝑎 ) ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ↔ ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ) )
41 40 rabbidva ( 𝜑 → { 𝑎𝐵 ∣ ( 𝐹𝑎 ) ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } } = { 𝑎𝐵 ∣ ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } } )
42 eceq1 ( 𝑎 = ( 0g𝑅 ) → [ 𝑎 ] = [ ( 0g𝑅 ) ] )
43 oveq2 ( 𝑎 = ( 0g𝑅 ) → ( 1 · 𝑎 ) = ( 1 · ( 0g𝑅 ) ) )
44 42 43 opeq12d ( 𝑎 = ( 0g𝑅 ) → ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ = ⟨ [ ( 0g𝑅 ) ] , ( 1 · ( 0g𝑅 ) ) ⟩ )
45 44 eleq1d ( 𝑎 = ( 0g𝑅 ) → ( ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ↔ ⟨ [ ( 0g𝑅 ) ] , ( 1 · ( 0g𝑅 ) ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ) )
46 rnggrp ( 𝑅 ∈ Rng → 𝑅 ∈ Grp )
47 1 46 syl ( 𝜑𝑅 ∈ Grp )
48 47 grpmndd ( 𝜑𝑅 ∈ Mnd )
49 eqid ( 0g𝑅 ) = ( 0g𝑅 )
50 5 49 mndidcl ( 𝑅 ∈ Mnd → ( 0g𝑅 ) ∈ 𝐵 )
51 48 50 syl ( 𝜑 → ( 0g𝑅 ) ∈ 𝐵 )
52 8 eceq2i [ ( 0g𝑅 ) ] = [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 )
53 20 49 qus0 ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) )
54 16 53 syl ( 𝜑 → [ ( 0g𝑅 ) ] ( 𝑅 ~QG 𝐼 ) = ( 0g𝑄 ) )
55 52 54 eqtrid ( 𝜑 → [ ( 0g𝑅 ) ] = ( 0g𝑄 ) )
56 1 2 15 rng2idl0 ( 𝜑 → ( 0g𝑅 ) ∈ 𝐼 )
57 5 21 2idlss ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼𝐵 )
58 2 57 syl ( 𝜑𝐼𝐵 )
59 3 5 49 ress0g ( ( 𝑅 ∈ Mnd ∧ ( 0g𝑅 ) ∈ 𝐼𝐼𝐵 ) → ( 0g𝑅 ) = ( 0g𝐽 ) )
60 48 56 58 59 syl3anc ( 𝜑 → ( 0g𝑅 ) = ( 0g𝐽 ) )
61 60 oveq2d ( 𝜑 → ( 1 · ( 0g𝑅 ) ) = ( 1 · ( 0g𝐽 ) ) )
62 3 6 ressmulr ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → · = ( .r𝐽 ) )
63 2 62 syl ( 𝜑· = ( .r𝐽 ) )
64 63 oveqd ( 𝜑 → ( 1 · ( 0g𝐽 ) ) = ( 1 ( .r𝐽 ) ( 0g𝐽 ) ) )
65 eqid ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 )
66 65 7 ringidcl ( 𝐽 ∈ Ring → 1 ∈ ( Base ‘ 𝐽 ) )
67 eqid ( .r𝐽 ) = ( .r𝐽 )
68 eqid ( 0g𝐽 ) = ( 0g𝐽 )
69 65 67 68 ringrz ( ( 𝐽 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝐽 ) ) → ( 1 ( .r𝐽 ) ( 0g𝐽 ) ) = ( 0g𝐽 ) )
70 4 66 69 syl2anc2 ( 𝜑 → ( 1 ( .r𝐽 ) ( 0g𝐽 ) ) = ( 0g𝐽 ) )
71 61 64 70 3eqtrd ( 𝜑 → ( 1 · ( 0g𝑅 ) ) = ( 0g𝐽 ) )
72 55 71 opeq12d ( 𝜑 → ⟨ [ ( 0g𝑅 ) ] , ( 1 · ( 0g𝑅 ) ) ⟩ = ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ )
73 opex ⟨ [ ( 0g𝑅 ) ] , ( 1 · ( 0g𝑅 ) ) ⟩ ∈ V
74 73 elsn ( ⟨ [ ( 0g𝑅 ) ] , ( 1 · ( 0g𝑅 ) ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ↔ ⟨ [ ( 0g𝑅 ) ] , ( 1 · ( 0g𝑅 ) ) ⟩ = ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ )
75 72 74 sylibr ( 𝜑 → ⟨ [ ( 0g𝑅 ) ] , ( 1 · ( 0g𝑅 ) ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } )
76 opex ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ∈ V
77 76 elsn ( ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ↔ ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ = ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ )
78 8 ovexi ∈ V
79 ecexg ( ∈ V → [ 𝑎 ] ∈ V )
80 78 79 ax-mp [ 𝑎 ] ∈ V
81 ovex ( 1 · 𝑎 ) ∈ V
82 80 81 opth ( ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ = ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ ↔ ( [ 𝑎 ] = ( 0g𝑄 ) ∧ ( 1 · 𝑎 ) = ( 0g𝐽 ) ) )
83 77 82 bitri ( ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ↔ ( [ 𝑎 ] = ( 0g𝑄 ) ∧ ( 1 · 𝑎 ) = ( 0g𝐽 ) ) )
84 1 2 3 4 5 6 7 8 9 rngqiprngimf1lem ( ( 𝜑𝑎𝐵 ) → ( ( [ 𝑎 ] = ( 0g𝑄 ) ∧ ( 1 · 𝑎 ) = ( 0g𝐽 ) ) → 𝑎 = ( 0g𝑅 ) ) )
85 83 84 biimtrid ( ( 𝜑𝑎𝐵 ) → ( ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } → 𝑎 = ( 0g𝑅 ) ) )
86 85 imp ( ( ( 𝜑𝑎𝐵 ) ∧ ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } ) → 𝑎 = ( 0g𝑅 ) )
87 45 51 75 86 rabeqsnd ( 𝜑 → { 𝑎𝐵 ∣ ⟨ [ 𝑎 ] , ( 1 · 𝑎 ) ⟩ ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } } = { ( 0g𝑅 ) } )
88 41 87 eqtrd ( 𝜑 → { 𝑎𝐵 ∣ ( 𝐹𝑎 ) ∈ { ⟨ ( 0g𝑄 ) , ( 0g𝐽 ) ⟩ } } = { ( 0g𝑅 ) } )
89 32 38 88 3eqtrd ( 𝜑 → ( 𝐹 “ { ( 0g𝑃 ) } ) = { ( 0g𝑅 ) } )
90 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngghm ( 𝜑𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) )
91 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
92 eqid ( 0g𝑃 ) = ( 0g𝑃 )
93 5 91 49 92 kerf1ghm ( 𝐹 ∈ ( 𝑅 GrpHom 𝑃 ) → ( 𝐹 : 𝐵1-1→ ( Base ‘ 𝑃 ) ↔ ( 𝐹 “ { ( 0g𝑃 ) } ) = { ( 0g𝑅 ) } ) )
94 90 93 syl ( 𝜑 → ( 𝐹 : 𝐵1-1→ ( Base ‘ 𝑃 ) ↔ ( 𝐹 “ { ( 0g𝑃 ) } ) = { ( 0g𝑅 ) } ) )
95 89 94 mpbird ( 𝜑𝐹 : 𝐵1-1→ ( Base ‘ 𝑃 ) )
96 eqidd ( 𝜑𝐹 = 𝐹 )
97 eqidd ( 𝜑𝐵 = 𝐵 )
98 1 2 3 4 5 6 7 8 9 10 11 rngqipbas ( 𝜑 → ( Base ‘ 𝑃 ) = ( 𝐶 × 𝐼 ) )
99 96 97 98 f1eq123d ( 𝜑 → ( 𝐹 : 𝐵1-1→ ( Base ‘ 𝑃 ) ↔ 𝐹 : 𝐵1-1→ ( 𝐶 × 𝐼 ) ) )
100 95 99 mpbid ( 𝜑𝐹 : 𝐵1-1→ ( 𝐶 × 𝐼 ) )