Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngim.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
11 |
|
rngqiprngim.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
12 |
|
rngqiprngim.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) |
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimf |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( 𝐶 × 𝐼 ) ) |
14 |
|
elxpi |
⊢ ( 𝑏 ∈ ( 𝐶 × 𝐼 ) → ∃ 𝑝 ∃ 𝑞 ( 𝑏 = 〈 𝑝 , 𝑞 〉 ∧ ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) ) ) |
15 |
10
|
eleq2i |
⊢ ( 𝑝 ∈ 𝐶 ↔ 𝑝 ∈ ( Base ‘ 𝑄 ) ) |
16 |
|
vex |
⊢ 𝑝 ∈ V |
17 |
8 9 5
|
quselbas |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑝 ∈ V ) → ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↔ ∃ 𝑐 ∈ 𝐵 𝑝 = [ 𝑐 ] ∼ ) ) |
18 |
1 16 17
|
sylancl |
⊢ ( 𝜑 → ( 𝑝 ∈ ( Base ‘ 𝑄 ) ↔ ∃ 𝑐 ∈ 𝐵 𝑝 = [ 𝑐 ] ∼ ) ) |
19 |
15 18
|
bitrid |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝐶 ↔ ∃ 𝑐 ∈ 𝐵 𝑝 = [ 𝑐 ] ∼ ) ) |
20 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
21 |
|
rnggrp |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) |
22 |
1 21
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
23 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝑅 ∈ Grp ) |
24 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝑐 ∈ 𝐵 ) |
25 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝑅 ∈ Rng ) |
26 |
1 2 3 4 5 6 7
|
rngqiprng1elbas |
⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 1 ∈ 𝐵 ) |
28 |
5 6
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝑐 ∈ 𝐵 ) → ( 1 · 𝑐 ) ∈ 𝐵 ) |
29 |
25 27 24 28
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( 1 · 𝑐 ) ∈ 𝐵 ) |
30 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
31 |
5 30
|
grpsubcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑐 ∈ 𝐵 ∧ ( 1 · 𝑐 ) ∈ 𝐵 ) → ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ∈ 𝐵 ) |
32 |
23 24 29 31
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ∈ 𝐵 ) |
33 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
34 |
5 33
|
2idlss |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → 𝐼 ⊆ 𝐵 ) |
35 |
2 34
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ 𝐵 ) |
36 |
35
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) → 𝑞 ∈ 𝐵 ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝑞 ∈ 𝐵 ) |
38 |
5 20 23 32 37
|
grpcld |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ∈ 𝐵 ) |
39 |
38
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑝 = [ 𝑐 ] ∼ ) → ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ∈ 𝐵 ) |
40 |
|
opeq1 |
⊢ ( 𝑝 = [ 𝑐 ] ∼ → 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑐 ] ∼ , 𝑞 〉 ) |
41 |
40
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑝 = [ 𝑐 ] ∼ ) → 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑐 ] ∼ , 𝑞 〉 ) |
42 |
|
eceq1 |
⊢ ( 𝑎 = ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) → [ 𝑎 ] ∼ = [ ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ] ∼ ) |
43 |
|
oveq2 |
⊢ ( 𝑎 = ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) → ( 1 · 𝑎 ) = ( 1 · ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) ) |
44 |
42 43
|
opeq12d |
⊢ ( 𝑎 = ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) → 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 = 〈 [ ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ] ∼ , ( 1 · ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) 〉 ) |
45 |
41 44
|
eqeqan12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑝 = [ 𝑐 ] ∼ ) ∧ 𝑎 = ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) → ( 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ↔ 〈 [ 𝑐 ] ∼ , 𝑞 〉 = 〈 [ ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ] ∼ , ( 1 · ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) 〉 ) ) |
46 |
|
rngabl |
⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Abel ) |
47 |
1 46
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Abel ) |
48 |
47
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝑅 ∈ Abel ) |
49 |
5 20 30
|
ablsubaddsub |
⊢ ( ( 𝑅 ∈ Abel ∧ ( 𝑐 ∈ 𝐵 ∧ ( 1 · 𝑐 ) ∈ 𝐵 ∧ 𝑞 ∈ 𝐵 ) ) → ( ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ( -g ‘ 𝑅 ) 𝑐 ) = ( 𝑞 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ) |
50 |
48 24 29 37 49
|
syl13anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ( -g ‘ 𝑅 ) 𝑐 ) = ( 𝑞 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ) |
51 |
4
|
ringgrpd |
⊢ ( 𝜑 → 𝐽 ∈ Grp ) |
52 |
51
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝐽 ∈ Grp ) |
53 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
54 |
2 3 53
|
2idlbas |
⊢ ( 𝜑 → ( Base ‘ 𝐽 ) = 𝐼 ) |
55 |
54
|
eqcomd |
⊢ ( 𝜑 → 𝐼 = ( Base ‘ 𝐽 ) ) |
56 |
55
|
eleq2d |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝐼 ↔ 𝑞 ∈ ( Base ‘ 𝐽 ) ) ) |
57 |
56
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) → 𝑞 ∈ ( Base ‘ 𝐽 ) ) |
58 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝑞 ∈ ( Base ‘ 𝐽 ) ) |
59 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝐵 ) → ( 1 · 𝑐 ) ∈ ( Base ‘ 𝐽 ) ) |
60 |
59
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( 1 · 𝑐 ) ∈ ( Base ‘ 𝐽 ) ) |
61 |
|
eqid |
⊢ ( -g ‘ 𝐽 ) = ( -g ‘ 𝐽 ) |
62 |
53 61
|
grpsubcl |
⊢ ( ( 𝐽 ∈ Grp ∧ 𝑞 ∈ ( Base ‘ 𝐽 ) ∧ ( 1 · 𝑐 ) ∈ ( Base ‘ 𝐽 ) ) → ( 𝑞 ( -g ‘ 𝐽 ) ( 1 · 𝑐 ) ) ∈ ( Base ‘ 𝐽 ) ) |
63 |
52 58 60 62
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( 𝑞 ( -g ‘ 𝐽 ) ( 1 · 𝑐 ) ) ∈ ( Base ‘ 𝐽 ) ) |
64 |
|
ringrng |
⊢ ( 𝐽 ∈ Ring → 𝐽 ∈ Rng ) |
65 |
4 64
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Rng ) |
66 |
3 65
|
eqeltrrid |
⊢ ( 𝜑 → ( 𝑅 ↾s 𝐼 ) ∈ Rng ) |
67 |
1 2 66
|
rng2idlnsg |
⊢ ( 𝜑 → 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
68 |
|
nsgsubg |
⊢ ( 𝐼 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
69 |
67 68
|
syl |
⊢ ( 𝜑 → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
71 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝑞 ∈ 𝐼 ) |
72 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( Base ‘ 𝐽 ) = 𝐼 ) |
73 |
60 72
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( 1 · 𝑐 ) ∈ 𝐼 ) |
74 |
30 3 61
|
subgsub |
⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑞 ∈ 𝐼 ∧ ( 1 · 𝑐 ) ∈ 𝐼 ) → ( 𝑞 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) = ( 𝑞 ( -g ‘ 𝐽 ) ( 1 · 𝑐 ) ) ) |
75 |
70 71 73 74
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( 𝑞 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) = ( 𝑞 ( -g ‘ 𝐽 ) ( 1 · 𝑐 ) ) ) |
76 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝐼 = ( Base ‘ 𝐽 ) ) |
77 |
63 75 76
|
3eltr4d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( 𝑞 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ∈ 𝐼 ) |
78 |
50 77
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐼 ) |
79 |
5 30 8
|
qusecsub |
⊢ ( ( ( 𝑅 ∈ Abel ∧ 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ ( 𝑐 ∈ 𝐵 ∧ ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ∈ 𝐵 ) ) → ( [ 𝑐 ] ∼ = [ ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ] ∼ ↔ ( ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐼 ) ) |
80 |
48 70 24 38 79
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( [ 𝑐 ] ∼ = [ ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ] ∼ ↔ ( ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ( -g ‘ 𝑅 ) 𝑐 ) ∈ 𝐼 ) ) |
81 |
78 80
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → [ 𝑐 ] ∼ = [ ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ] ∼ ) |
82 |
1 2 3 4 5 6 7
|
rngqiprngimfolem |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ∧ 𝑐 ∈ 𝐵 ) → ( 1 · ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) = 𝑞 ) |
83 |
82
|
3expa |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → ( 1 · ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) = 𝑞 ) |
84 |
83
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 𝑞 = ( 1 · ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) ) |
85 |
81 84
|
opeq12d |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) → 〈 [ 𝑐 ] ∼ , 𝑞 〉 = 〈 [ ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ] ∼ , ( 1 · ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) 〉 ) |
86 |
85
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑝 = [ 𝑐 ] ∼ ) → 〈 [ 𝑐 ] ∼ , 𝑞 〉 = 〈 [ ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ] ∼ , ( 1 · ( ( 𝑐 ( -g ‘ 𝑅 ) ( 1 · 𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) 〉 ) |
87 |
39 45 86
|
rspcedvd |
⊢ ( ( ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) ∧ 𝑐 ∈ 𝐵 ) ∧ 𝑝 = [ 𝑐 ] ∼ ) → ∃ 𝑎 ∈ 𝐵 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) |
88 |
87
|
rexlimdva2 |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ 𝐼 ) → ( ∃ 𝑐 ∈ 𝐵 𝑝 = [ 𝑐 ] ∼ → ∃ 𝑎 ∈ 𝐵 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) ) |
89 |
88
|
ex |
⊢ ( 𝜑 → ( 𝑞 ∈ 𝐼 → ( ∃ 𝑐 ∈ 𝐵 𝑝 = [ 𝑐 ] ∼ → ∃ 𝑎 ∈ 𝐵 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) ) ) |
90 |
89
|
com23 |
⊢ ( 𝜑 → ( ∃ 𝑐 ∈ 𝐵 𝑝 = [ 𝑐 ] ∼ → ( 𝑞 ∈ 𝐼 → ∃ 𝑎 ∈ 𝐵 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) ) ) |
91 |
19 90
|
sylbid |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝐶 → ( 𝑞 ∈ 𝐼 → ∃ 𝑎 ∈ 𝐵 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) ) ) |
92 |
91
|
impd |
⊢ ( 𝜑 → ( ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) → ∃ 𝑎 ∈ 𝐵 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) ) |
93 |
92
|
com12 |
⊢ ( ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) → ( 𝜑 → ∃ 𝑎 ∈ 𝐵 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) ) |
94 |
93
|
adantl |
⊢ ( ( 𝑏 = 〈 𝑝 , 𝑞 〉 ∧ ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) ) → ( 𝜑 → ∃ 𝑎 ∈ 𝐵 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) ) |
95 |
94
|
imp |
⊢ ( ( ( 𝑏 = 〈 𝑝 , 𝑞 〉 ∧ ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) ) ∧ 𝜑 ) → ∃ 𝑎 ∈ 𝐵 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) |
96 |
|
simplll |
⊢ ( ( ( ( 𝑏 = 〈 𝑝 , 𝑞 〉 ∧ ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) ) ∧ 𝜑 ) ∧ 𝑎 ∈ 𝐵 ) → 𝑏 = 〈 𝑝 , 𝑞 〉 ) |
97 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) |
98 |
97
|
adantll |
⊢ ( ( ( ( 𝑏 = 〈 𝑝 , 𝑞 〉 ∧ ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) ) ∧ 𝜑 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) |
99 |
96 98
|
eqeq12d |
⊢ ( ( ( ( 𝑏 = 〈 𝑝 , 𝑞 〉 ∧ ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) ) ∧ 𝜑 ) ∧ 𝑎 ∈ 𝐵 ) → ( 𝑏 = ( 𝐹 ‘ 𝑎 ) ↔ 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) ) |
100 |
99
|
rexbidva |
⊢ ( ( ( 𝑏 = 〈 𝑝 , 𝑞 〉 ∧ ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) ) ∧ 𝜑 ) → ( ∃ 𝑎 ∈ 𝐵 𝑏 = ( 𝐹 ‘ 𝑎 ) ↔ ∃ 𝑎 ∈ 𝐵 〈 𝑝 , 𝑞 〉 = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) ) |
101 |
95 100
|
mpbird |
⊢ ( ( ( 𝑏 = 〈 𝑝 , 𝑞 〉 ∧ ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) ) ∧ 𝜑 ) → ∃ 𝑎 ∈ 𝐵 𝑏 = ( 𝐹 ‘ 𝑎 ) ) |
102 |
101
|
ex |
⊢ ( ( 𝑏 = 〈 𝑝 , 𝑞 〉 ∧ ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) ) → ( 𝜑 → ∃ 𝑎 ∈ 𝐵 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ) |
103 |
102
|
exlimivv |
⊢ ( ∃ 𝑝 ∃ 𝑞 ( 𝑏 = 〈 𝑝 , 𝑞 〉 ∧ ( 𝑝 ∈ 𝐶 ∧ 𝑞 ∈ 𝐼 ) ) → ( 𝜑 → ∃ 𝑎 ∈ 𝐵 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ) |
104 |
14 103
|
syl |
⊢ ( 𝑏 ∈ ( 𝐶 × 𝐼 ) → ( 𝜑 → ∃ 𝑎 ∈ 𝐵 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ) |
105 |
104
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐶 × 𝐼 ) ) → ∃ 𝑎 ∈ 𝐵 𝑏 = ( 𝐹 ‘ 𝑎 ) ) |
106 |
105
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( 𝐶 × 𝐼 ) ∃ 𝑎 ∈ 𝐵 𝑏 = ( 𝐹 ‘ 𝑎 ) ) |
107 |
|
dffo3 |
⊢ ( 𝐹 : 𝐵 –onto→ ( 𝐶 × 𝐼 ) ↔ ( 𝐹 : 𝐵 ⟶ ( 𝐶 × 𝐼 ) ∧ ∀ 𝑏 ∈ ( 𝐶 × 𝐼 ) ∃ 𝑎 ∈ 𝐵 𝑏 = ( 𝐹 ‘ 𝑎 ) ) ) |
108 |
13 106 107
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐵 –onto→ ( 𝐶 × 𝐼 ) ) |