| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r | ⊢ ( 𝜑  →  𝑅  ∈  Rng ) | 
						
							| 2 |  | rng2idlring.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 2Ideal ‘ 𝑅 ) ) | 
						
							| 3 |  | rng2idlring.j | ⊢ 𝐽  =  ( 𝑅  ↾s  𝐼 ) | 
						
							| 4 |  | rng2idlring.u | ⊢ ( 𝜑  →  𝐽  ∈  Ring ) | 
						
							| 5 |  | rng2idlring.b | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 6 |  | rng2idlring.t | ⊢  ·   =  ( .r ‘ 𝑅 ) | 
						
							| 7 |  | rng2idlring.1 | ⊢  1   =  ( 1r ‘ 𝐽 ) | 
						
							| 8 |  | rngqiprngim.g | ⊢  ∼   =  ( 𝑅  ~QG  𝐼 ) | 
						
							| 9 |  | rngqiprngim.q | ⊢ 𝑄  =  ( 𝑅  /s   ∼  ) | 
						
							| 10 |  | rngqiprngim.c | ⊢ 𝐶  =  ( Base ‘ 𝑄 ) | 
						
							| 11 |  | rngqiprngim.p | ⊢ 𝑃  =  ( 𝑄  ×s  𝐽 ) | 
						
							| 12 |  | rngqiprngim.f | ⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  〈 [ 𝑥 ]  ∼  ,  (  1   ·  𝑥 ) 〉 ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimf | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ ( 𝐶  ×  𝐼 ) ) | 
						
							| 14 |  | elxpi | ⊢ ( 𝑏  ∈  ( 𝐶  ×  𝐼 )  →  ∃ 𝑝 ∃ 𝑞 ( 𝑏  =  〈 𝑝 ,  𝑞 〉  ∧  ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 ) ) ) | 
						
							| 15 | 10 | eleq2i | ⊢ ( 𝑝  ∈  𝐶  ↔  𝑝  ∈  ( Base ‘ 𝑄 ) ) | 
						
							| 16 |  | vex | ⊢ 𝑝  ∈  V | 
						
							| 17 | 8 9 5 | quselbas | ⊢ ( ( 𝑅  ∈  Rng  ∧  𝑝  ∈  V )  →  ( 𝑝  ∈  ( Base ‘ 𝑄 )  ↔  ∃ 𝑐  ∈  𝐵 𝑝  =  [ 𝑐 ]  ∼  ) ) | 
						
							| 18 | 1 16 17 | sylancl | ⊢ ( 𝜑  →  ( 𝑝  ∈  ( Base ‘ 𝑄 )  ↔  ∃ 𝑐  ∈  𝐵 𝑝  =  [ 𝑐 ]  ∼  ) ) | 
						
							| 19 | 15 18 | bitrid | ⊢ ( 𝜑  →  ( 𝑝  ∈  𝐶  ↔  ∃ 𝑐  ∈  𝐵 𝑝  =  [ 𝑐 ]  ∼  ) ) | 
						
							| 20 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 21 |  | rnggrp | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Grp ) | 
						
							| 22 | 1 21 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Grp ) | 
						
							| 23 | 22 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝑅  ∈  Grp ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝑐  ∈  𝐵 ) | 
						
							| 25 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝑅  ∈  Rng ) | 
						
							| 26 | 1 2 3 4 5 6 7 | rngqiprng1elbas | ⊢ ( 𝜑  →   1   ∈  𝐵 ) | 
						
							| 27 | 26 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →   1   ∈  𝐵 ) | 
						
							| 28 | 5 6 | rngcl | ⊢ ( ( 𝑅  ∈  Rng  ∧   1   ∈  𝐵  ∧  𝑐  ∈  𝐵 )  →  (  1   ·  𝑐 )  ∈  𝐵 ) | 
						
							| 29 | 25 27 24 28 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  (  1   ·  𝑐 )  ∈  𝐵 ) | 
						
							| 30 |  | eqid | ⊢ ( -g ‘ 𝑅 )  =  ( -g ‘ 𝑅 ) | 
						
							| 31 | 5 30 | grpsubcl | ⊢ ( ( 𝑅  ∈  Grp  ∧  𝑐  ∈  𝐵  ∧  (  1   ·  𝑐 )  ∈  𝐵 )  →  ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) )  ∈  𝐵 ) | 
						
							| 32 | 23 24 29 31 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) )  ∈  𝐵 ) | 
						
							| 33 |  | eqid | ⊢ ( 2Ideal ‘ 𝑅 )  =  ( 2Ideal ‘ 𝑅 ) | 
						
							| 34 | 5 33 | 2idlss | ⊢ ( 𝐼  ∈  ( 2Ideal ‘ 𝑅 )  →  𝐼  ⊆  𝐵 ) | 
						
							| 35 | 2 34 | syl | ⊢ ( 𝜑  →  𝐼  ⊆  𝐵 ) | 
						
							| 36 | 35 | sselda | ⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  →  𝑞  ∈  𝐵 ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝑞  ∈  𝐵 ) | 
						
							| 38 | 5 20 23 32 37 | grpcld | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 )  ∈  𝐵 ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  ∧  𝑝  =  [ 𝑐 ]  ∼  )  →  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 )  ∈  𝐵 ) | 
						
							| 40 |  | opeq1 | ⊢ ( 𝑝  =  [ 𝑐 ]  ∼   →  〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑐 ]  ∼  ,  𝑞 〉 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  ∧  𝑝  =  [ 𝑐 ]  ∼  )  →  〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑐 ]  ∼  ,  𝑞 〉 ) | 
						
							| 42 |  | eceq1 | ⊢ ( 𝑎  =  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 )  →  [ 𝑎 ]  ∼   =  [ ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ]  ∼  ) | 
						
							| 43 |  | oveq2 | ⊢ ( 𝑎  =  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 )  →  (  1   ·  𝑎 )  =  (  1   ·  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) ) | 
						
							| 44 | 42 43 | opeq12d | ⊢ ( 𝑎  =  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 )  →  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉  =  〈 [ ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ]  ∼  ,  (  1   ·  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) 〉 ) | 
						
							| 45 | 41 44 | eqeqan12d | ⊢ ( ( ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  ∧  𝑝  =  [ 𝑐 ]  ∼  )  ∧  𝑎  =  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) )  →  ( 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉  ↔  〈 [ 𝑐 ]  ∼  ,  𝑞 〉  =  〈 [ ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ]  ∼  ,  (  1   ·  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) 〉 ) ) | 
						
							| 46 |  | rngabl | ⊢ ( 𝑅  ∈  Rng  →  𝑅  ∈  Abel ) | 
						
							| 47 | 1 46 | syl | ⊢ ( 𝜑  →  𝑅  ∈  Abel ) | 
						
							| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝑅  ∈  Abel ) | 
						
							| 49 | 5 20 30 | ablsubaddsub | ⊢ ( ( 𝑅  ∈  Abel  ∧  ( 𝑐  ∈  𝐵  ∧  (  1   ·  𝑐 )  ∈  𝐵  ∧  𝑞  ∈  𝐵 ) )  →  ( ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ( -g ‘ 𝑅 ) 𝑐 )  =  ( 𝑞 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ) | 
						
							| 50 | 48 24 29 37 49 | syl13anc | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  ( ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ( -g ‘ 𝑅 ) 𝑐 )  =  ( 𝑞 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ) | 
						
							| 51 | 4 | ringgrpd | ⊢ ( 𝜑  →  𝐽  ∈  Grp ) | 
						
							| 52 | 51 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝐽  ∈  Grp ) | 
						
							| 53 |  | eqid | ⊢ ( Base ‘ 𝐽 )  =  ( Base ‘ 𝐽 ) | 
						
							| 54 | 2 3 53 | 2idlbas | ⊢ ( 𝜑  →  ( Base ‘ 𝐽 )  =  𝐼 ) | 
						
							| 55 | 54 | eqcomd | ⊢ ( 𝜑  →  𝐼  =  ( Base ‘ 𝐽 ) ) | 
						
							| 56 | 55 | eleq2d | ⊢ ( 𝜑  →  ( 𝑞  ∈  𝐼  ↔  𝑞  ∈  ( Base ‘ 𝐽 ) ) ) | 
						
							| 57 | 56 | biimpa | ⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  →  𝑞  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝑞  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 | ⊢ ( ( 𝜑  ∧  𝑐  ∈  𝐵 )  →  (  1   ·  𝑐 )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 60 | 59 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  (  1   ·  𝑐 )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 61 |  | eqid | ⊢ ( -g ‘ 𝐽 )  =  ( -g ‘ 𝐽 ) | 
						
							| 62 | 53 61 | grpsubcl | ⊢ ( ( 𝐽  ∈  Grp  ∧  𝑞  ∈  ( Base ‘ 𝐽 )  ∧  (  1   ·  𝑐 )  ∈  ( Base ‘ 𝐽 ) )  →  ( 𝑞 ( -g ‘ 𝐽 ) (  1   ·  𝑐 ) )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 63 | 52 58 60 62 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  ( 𝑞 ( -g ‘ 𝐽 ) (  1   ·  𝑐 ) )  ∈  ( Base ‘ 𝐽 ) ) | 
						
							| 64 |  | ringrng | ⊢ ( 𝐽  ∈  Ring  →  𝐽  ∈  Rng ) | 
						
							| 65 | 4 64 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Rng ) | 
						
							| 66 | 3 65 | eqeltrrid | ⊢ ( 𝜑  →  ( 𝑅  ↾s  𝐼 )  ∈  Rng ) | 
						
							| 67 | 1 2 66 | rng2idlnsg | ⊢ ( 𝜑  →  𝐼  ∈  ( NrmSGrp ‘ 𝑅 ) ) | 
						
							| 68 |  | nsgsubg | ⊢ ( 𝐼  ∈  ( NrmSGrp ‘ 𝑅 )  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 69 | 67 68 | syl | ⊢ ( 𝜑  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 70 | 69 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝐼  ∈  ( SubGrp ‘ 𝑅 ) ) | 
						
							| 71 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝑞  ∈  𝐼 ) | 
						
							| 72 | 54 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  ( Base ‘ 𝐽 )  =  𝐼 ) | 
						
							| 73 | 60 72 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  (  1   ·  𝑐 )  ∈  𝐼 ) | 
						
							| 74 | 30 3 61 | subgsub | ⊢ ( ( 𝐼  ∈  ( SubGrp ‘ 𝑅 )  ∧  𝑞  ∈  𝐼  ∧  (  1   ·  𝑐 )  ∈  𝐼 )  →  ( 𝑞 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) )  =  ( 𝑞 ( -g ‘ 𝐽 ) (  1   ·  𝑐 ) ) ) | 
						
							| 75 | 70 71 73 74 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  ( 𝑞 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) )  =  ( 𝑞 ( -g ‘ 𝐽 ) (  1   ·  𝑐 ) ) ) | 
						
							| 76 | 55 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝐼  =  ( Base ‘ 𝐽 ) ) | 
						
							| 77 | 63 75 76 | 3eltr4d | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  ( 𝑞 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) )  ∈  𝐼 ) | 
						
							| 78 | 50 77 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  ( ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ( -g ‘ 𝑅 ) 𝑐 )  ∈  𝐼 ) | 
						
							| 79 | 5 30 8 | qusecsub | ⊢ ( ( ( 𝑅  ∈  Abel  ∧  𝐼  ∈  ( SubGrp ‘ 𝑅 ) )  ∧  ( 𝑐  ∈  𝐵  ∧  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 )  ∈  𝐵 ) )  →  ( [ 𝑐 ]  ∼   =  [ ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ]  ∼   ↔  ( ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ( -g ‘ 𝑅 ) 𝑐 )  ∈  𝐼 ) ) | 
						
							| 80 | 48 70 24 38 79 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  ( [ 𝑐 ]  ∼   =  [ ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ]  ∼   ↔  ( ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ( -g ‘ 𝑅 ) 𝑐 )  ∈  𝐼 ) ) | 
						
							| 81 | 78 80 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  [ 𝑐 ]  ∼   =  [ ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ]  ∼  ) | 
						
							| 82 | 1 2 3 4 5 6 7 | rngqiprngimfolem | ⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐼  ∧  𝑐  ∈  𝐵 )  →  (  1   ·  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) )  =  𝑞 ) | 
						
							| 83 | 82 | 3expa | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  (  1   ·  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) )  =  𝑞 ) | 
						
							| 84 | 83 | eqcomd | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  𝑞  =  (  1   ·  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) ) | 
						
							| 85 | 81 84 | opeq12d | ⊢ ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  →  〈 [ 𝑐 ]  ∼  ,  𝑞 〉  =  〈 [ ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ]  ∼  ,  (  1   ·  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) 〉 ) | 
						
							| 86 | 85 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  ∧  𝑝  =  [ 𝑐 ]  ∼  )  →  〈 [ 𝑐 ]  ∼  ,  𝑞 〉  =  〈 [ ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ]  ∼  ,  (  1   ·  ( ( 𝑐 ( -g ‘ 𝑅 ) (  1   ·  𝑐 ) ) ( +g ‘ 𝑅 ) 𝑞 ) ) 〉 ) | 
						
							| 87 | 39 45 86 | rspcedvd | ⊢ ( ( ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  ∧  𝑐  ∈  𝐵 )  ∧  𝑝  =  [ 𝑐 ]  ∼  )  →  ∃ 𝑎  ∈  𝐵 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) | 
						
							| 88 | 87 | rexlimdva2 | ⊢ ( ( 𝜑  ∧  𝑞  ∈  𝐼 )  →  ( ∃ 𝑐  ∈  𝐵 𝑝  =  [ 𝑐 ]  ∼   →  ∃ 𝑎  ∈  𝐵 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) ) | 
						
							| 89 | 88 | ex | ⊢ ( 𝜑  →  ( 𝑞  ∈  𝐼  →  ( ∃ 𝑐  ∈  𝐵 𝑝  =  [ 𝑐 ]  ∼   →  ∃ 𝑎  ∈  𝐵 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) ) ) | 
						
							| 90 | 89 | com23 | ⊢ ( 𝜑  →  ( ∃ 𝑐  ∈  𝐵 𝑝  =  [ 𝑐 ]  ∼   →  ( 𝑞  ∈  𝐼  →  ∃ 𝑎  ∈  𝐵 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) ) ) | 
						
							| 91 | 19 90 | sylbid | ⊢ ( 𝜑  →  ( 𝑝  ∈  𝐶  →  ( 𝑞  ∈  𝐼  →  ∃ 𝑎  ∈  𝐵 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) ) ) | 
						
							| 92 | 91 | impd | ⊢ ( 𝜑  →  ( ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 )  →  ∃ 𝑎  ∈  𝐵 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) ) | 
						
							| 93 | 92 | com12 | ⊢ ( ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 )  →  ( 𝜑  →  ∃ 𝑎  ∈  𝐵 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( 𝑏  =  〈 𝑝 ,  𝑞 〉  ∧  ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 ) )  →  ( 𝜑  →  ∃ 𝑎  ∈  𝐵 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) ) | 
						
							| 95 | 94 | imp | ⊢ ( ( ( 𝑏  =  〈 𝑝 ,  𝑞 〉  ∧  ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 ) )  ∧  𝜑 )  →  ∃ 𝑎  ∈  𝐵 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) | 
						
							| 96 |  | simplll | ⊢ ( ( ( ( 𝑏  =  〈 𝑝 ,  𝑞 〉  ∧  ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 ) )  ∧  𝜑 )  ∧  𝑎  ∈  𝐵 )  →  𝑏  =  〈 𝑝 ,  𝑞 〉 ) | 
						
							| 97 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑎 )  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) | 
						
							| 98 | 97 | adantll | ⊢ ( ( ( ( 𝑏  =  〈 𝑝 ,  𝑞 〉  ∧  ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 ) )  ∧  𝜑 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑎 )  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) | 
						
							| 99 | 96 98 | eqeq12d | ⊢ ( ( ( ( 𝑏  =  〈 𝑝 ,  𝑞 〉  ∧  ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 ) )  ∧  𝜑 )  ∧  𝑎  ∈  𝐵 )  →  ( 𝑏  =  ( 𝐹 ‘ 𝑎 )  ↔  〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) ) | 
						
							| 100 | 99 | rexbidva | ⊢ ( ( ( 𝑏  =  〈 𝑝 ,  𝑞 〉  ∧  ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 ) )  ∧  𝜑 )  →  ( ∃ 𝑎  ∈  𝐵 𝑏  =  ( 𝐹 ‘ 𝑎 )  ↔  ∃ 𝑎  ∈  𝐵 〈 𝑝 ,  𝑞 〉  =  〈 [ 𝑎 ]  ∼  ,  (  1   ·  𝑎 ) 〉 ) ) | 
						
							| 101 | 95 100 | mpbird | ⊢ ( ( ( 𝑏  =  〈 𝑝 ,  𝑞 〉  ∧  ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 ) )  ∧  𝜑 )  →  ∃ 𝑎  ∈  𝐵 𝑏  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 102 | 101 | ex | ⊢ ( ( 𝑏  =  〈 𝑝 ,  𝑞 〉  ∧  ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 ) )  →  ( 𝜑  →  ∃ 𝑎  ∈  𝐵 𝑏  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 103 | 102 | exlimivv | ⊢ ( ∃ 𝑝 ∃ 𝑞 ( 𝑏  =  〈 𝑝 ,  𝑞 〉  ∧  ( 𝑝  ∈  𝐶  ∧  𝑞  ∈  𝐼 ) )  →  ( 𝜑  →  ∃ 𝑎  ∈  𝐵 𝑏  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 104 | 14 103 | syl | ⊢ ( 𝑏  ∈  ( 𝐶  ×  𝐼 )  →  ( 𝜑  →  ∃ 𝑎  ∈  𝐵 𝑏  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 105 | 104 | impcom | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( 𝐶  ×  𝐼 ) )  →  ∃ 𝑎  ∈  𝐵 𝑏  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 106 | 105 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( 𝐶  ×  𝐼 ) ∃ 𝑎  ∈  𝐵 𝑏  =  ( 𝐹 ‘ 𝑎 ) ) | 
						
							| 107 |  | dffo3 | ⊢ ( 𝐹 : 𝐵 –onto→ ( 𝐶  ×  𝐼 )  ↔  ( 𝐹 : 𝐵 ⟶ ( 𝐶  ×  𝐼 )  ∧  ∀ 𝑏  ∈  ( 𝐶  ×  𝐼 ) ∃ 𝑎  ∈  𝐵 𝑏  =  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 108 | 13 106 107 | sylanbrc | ⊢ ( 𝜑  →  𝐹 : 𝐵 –onto→ ( 𝐶  ×  𝐼 ) ) |