Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
⊢ ( 𝜑 → 𝑅 ∈ Rng ) |
2 |
|
rng2idlring.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
3 |
|
rng2idlring.j |
⊢ 𝐽 = ( 𝑅 ↾s 𝐼 ) |
4 |
|
rng2idlring.u |
⊢ ( 𝜑 → 𝐽 ∈ Ring ) |
5 |
|
rng2idlring.b |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
rng2idlring.t |
⊢ · = ( .r ‘ 𝑅 ) |
7 |
|
rng2idlring.1 |
⊢ 1 = ( 1r ‘ 𝐽 ) |
8 |
|
rngqiprngim.g |
⊢ ∼ = ( 𝑅 ~QG 𝐼 ) |
9 |
|
rngqiprngim.q |
⊢ 𝑄 = ( 𝑅 /s ∼ ) |
10 |
|
rngqiprngim.c |
⊢ 𝐶 = ( Base ‘ 𝑄 ) |
11 |
|
rngqiprngim.p |
⊢ 𝑃 = ( 𝑄 ×s 𝐽 ) |
12 |
|
rngqiprngim.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ 〈 [ 𝑥 ] ∼ , ( 1 · 𝑥 ) 〉 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝐽 ) = ( Base ‘ 𝐽 ) |
15 |
9
|
ovexi |
⊢ 𝑄 ∈ V |
16 |
15
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝑄 ∈ V ) |
17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐽 ∈ Ring ) |
18 |
|
simpl |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → 𝑎 ∈ 𝐵 ) |
19 |
8 9 5 13
|
quseccl0 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑎 ∈ 𝐵 ) → [ 𝑎 ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
20 |
1 18 19
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ 𝑎 ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
21 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 1 · 𝑎 ) ∈ ( Base ‘ 𝐽 ) ) |
22 |
18 21
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 1 · 𝑎 ) ∈ ( Base ‘ 𝐽 ) ) |
23 |
|
simpr |
⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → 𝑏 ∈ 𝐵 ) |
24 |
8 9 5 13
|
quseccl0 |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑏 ∈ 𝐵 ) → [ 𝑏 ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
25 |
1 23 24
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ 𝑏 ] ∼ ∈ ( Base ‘ 𝑄 ) ) |
26 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 1 · 𝑏 ) ∈ ( Base ‘ 𝐽 ) ) |
27 |
23 26
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 1 · 𝑏 ) ∈ ( Base ‘ 𝐽 ) ) |
28 |
1 2 3 4 5 6 7 8 9
|
rngqiprnglinlem3 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( [ 𝑎 ] ∼ ( .r ‘ 𝑄 ) [ 𝑏 ] ∼ ) ∈ ( Base ‘ 𝑄 ) ) |
29 |
|
eqid |
⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) |
30 |
14 29 17 22 27
|
ringcld |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 1 · 𝑎 ) ( .r ‘ 𝐽 ) ( 1 · 𝑏 ) ) ∈ ( Base ‘ 𝐽 ) ) |
31 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
32 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
33 |
11 13 14 16 17 20 22 25 27 28 30 31 29 32
|
xpsmul |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ( .r ‘ 𝑃 ) 〈 [ 𝑏 ] ∼ , ( 1 · 𝑏 ) 〉 ) = 〈 ( [ 𝑎 ] ∼ ( .r ‘ 𝑄 ) [ 𝑏 ] ∼ ) , ( ( 1 · 𝑎 ) ( .r ‘ 𝐽 ) ( 1 · 𝑏 ) ) 〉 ) |
34 |
1 2 3 4 5 6 7 8 9
|
rngqiprnglinlem2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → [ ( 𝑎 · 𝑏 ) ] ∼ = ( [ 𝑎 ] ∼ ( .r ‘ 𝑄 ) [ 𝑏 ] ∼ ) ) |
35 |
34
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( [ 𝑎 ] ∼ ( .r ‘ 𝑄 ) [ 𝑏 ] ∼ ) = [ ( 𝑎 · 𝑏 ) ] ∼ ) |
36 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) ) |
37 |
3 6
|
ressmulr |
⊢ ( 𝐼 ∈ ( 2Ideal ‘ 𝑅 ) → · = ( .r ‘ 𝐽 ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → · = ( .r ‘ 𝐽 ) ) |
39 |
38
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( .r ‘ 𝐽 ) = · ) |
40 |
39
|
oveqd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 1 · 𝑎 ) ( .r ‘ 𝐽 ) ( 1 · 𝑏 ) ) = ( ( 1 · 𝑎 ) · ( 1 · 𝑏 ) ) ) |
41 |
1 2 3 4 5 6 7
|
rngqiprnglinlem1 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 1 · 𝑎 ) · ( 1 · 𝑏 ) ) = ( 1 · ( 𝑎 · 𝑏 ) ) ) |
42 |
40 41
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 1 · 𝑎 ) ( .r ‘ 𝐽 ) ( 1 · 𝑏 ) ) = ( 1 · ( 𝑎 · 𝑏 ) ) ) |
43 |
35 42
|
opeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 〈 ( [ 𝑎 ] ∼ ( .r ‘ 𝑄 ) [ 𝑏 ] ∼ ) , ( ( 1 · 𝑎 ) ( .r ‘ 𝐽 ) ( 1 · 𝑏 ) ) 〉 = 〈 [ ( 𝑎 · 𝑏 ) ] ∼ , ( 1 · ( 𝑎 · 𝑏 ) ) 〉 ) |
44 |
33 43
|
eqtr2d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → 〈 [ ( 𝑎 · 𝑏 ) ] ∼ , ( 1 · ( 𝑎 · 𝑏 ) ) 〉 = ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ( .r ‘ 𝑃 ) 〈 [ 𝑏 ] ∼ , ( 1 · 𝑏 ) 〉 ) ) |
45 |
1
|
anim1i |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑅 ∈ Rng ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ) |
46 |
|
3anass |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) ) |
47 |
45 46
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑅 ∈ Rng ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) |
48 |
5 6
|
rngcl |
⊢ ( ( 𝑅 ∈ Rng ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝑎 · 𝑏 ) ∈ 𝐵 ) |
50 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
⊢ ( ( 𝜑 ∧ ( 𝑎 · 𝑏 ) ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = 〈 [ ( 𝑎 · 𝑏 ) ] ∼ , ( 1 · ( 𝑎 · 𝑏 ) ) 〉 ) |
51 |
49 50
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = 〈 [ ( 𝑎 · 𝑏 ) ] ∼ , ( 1 · ( 𝑎 · 𝑏 ) ) 〉 ) |
52 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑎 ) = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) |
53 |
18 52
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑎 ) = 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑏 ) = 〈 [ 𝑏 ] ∼ , ( 1 · 𝑏 ) 〉 ) |
55 |
23 54
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑏 ) = 〈 [ 𝑏 ] ∼ , ( 1 · 𝑏 ) 〉 ) |
56 |
53 55
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑏 ) ) = ( 〈 [ 𝑎 ] ∼ , ( 1 · 𝑎 ) 〉 ( .r ‘ 𝑃 ) 〈 [ 𝑏 ] ∼ , ( 1 · 𝑏 ) 〉 ) ) |
57 |
44 51 56
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑏 ) ) ) |
58 |
57
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝐹 ‘ ( 𝑎 · 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( .r ‘ 𝑃 ) ( 𝐹 ‘ 𝑏 ) ) ) |