| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rng2idlring.r |  |-  ( ph -> R e. Rng ) | 
						
							| 2 |  | rng2idlring.i |  |-  ( ph -> I e. ( 2Ideal ` R ) ) | 
						
							| 3 |  | rng2idlring.j |  |-  J = ( R |`s I ) | 
						
							| 4 |  | rng2idlring.u |  |-  ( ph -> J e. Ring ) | 
						
							| 5 |  | rng2idlring.b |  |-  B = ( Base ` R ) | 
						
							| 6 |  | rng2idlring.t |  |-  .x. = ( .r ` R ) | 
						
							| 7 |  | rng2idlring.1 |  |-  .1. = ( 1r ` J ) | 
						
							| 8 |  | rngqiprngim.g |  |-  .~ = ( R ~QG I ) | 
						
							| 9 |  | rngqiprngim.q |  |-  Q = ( R /s .~ ) | 
						
							| 10 |  | rngqiprngim.c |  |-  C = ( Base ` Q ) | 
						
							| 11 |  | rngqiprngim.p |  |-  P = ( Q Xs. J ) | 
						
							| 12 |  | rngqiprngim.f |  |-  F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) | 
						
							| 13 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 14 |  | eqid |  |-  ( Base ` J ) = ( Base ` J ) | 
						
							| 15 | 9 | ovexi |  |-  Q e. _V | 
						
							| 16 | 15 | a1i |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> Q e. _V ) | 
						
							| 17 | 4 | adantr |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> J e. Ring ) | 
						
							| 18 |  | simpl |  |-  ( ( a e. B /\ b e. B ) -> a e. B ) | 
						
							| 19 | 8 9 5 13 | quseccl0 |  |-  ( ( R e. Rng /\ a e. B ) -> [ a ] .~ e. ( Base ` Q ) ) | 
						
							| 20 | 1 18 19 | syl2an |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ a ] .~ e. ( Base ` Q ) ) | 
						
							| 21 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 |  |-  ( ( ph /\ a e. B ) -> ( .1. .x. a ) e. ( Base ` J ) ) | 
						
							| 22 | 18 21 | sylan2 |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .1. .x. a ) e. ( Base ` J ) ) | 
						
							| 23 |  | simpr |  |-  ( ( a e. B /\ b e. B ) -> b e. B ) | 
						
							| 24 | 8 9 5 13 | quseccl0 |  |-  ( ( R e. Rng /\ b e. B ) -> [ b ] .~ e. ( Base ` Q ) ) | 
						
							| 25 | 1 23 24 | syl2an |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ b ] .~ e. ( Base ` Q ) ) | 
						
							| 26 | 1 2 3 4 5 6 7 | rngqiprngghmlem1 |  |-  ( ( ph /\ b e. B ) -> ( .1. .x. b ) e. ( Base ` J ) ) | 
						
							| 27 | 23 26 | sylan2 |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .1. .x. b ) e. ( Base ` J ) ) | 
						
							| 28 | 1 2 3 4 5 6 7 8 9 | rngqiprnglinlem3 |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( [ a ] .~ ( .r ` Q ) [ b ] .~ ) e. ( Base ` Q ) ) | 
						
							| 29 |  | eqid |  |-  ( .r ` J ) = ( .r ` J ) | 
						
							| 30 | 14 29 17 22 27 | ringcld |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( .1. .x. a ) ( .r ` J ) ( .1. .x. b ) ) e. ( Base ` J ) ) | 
						
							| 31 |  | eqid |  |-  ( .r ` Q ) = ( .r ` Q ) | 
						
							| 32 |  | eqid |  |-  ( .r ` P ) = ( .r ` P ) | 
						
							| 33 | 11 13 14 16 17 20 22 25 27 28 30 31 29 32 | xpsmul |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( <. [ a ] .~ , ( .1. .x. a ) >. ( .r ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) = <. ( [ a ] .~ ( .r ` Q ) [ b ] .~ ) , ( ( .1. .x. a ) ( .r ` J ) ( .1. .x. b ) ) >. ) | 
						
							| 34 | 1 2 3 4 5 6 7 8 9 | rngqiprnglinlem2 |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ ( a .x. b ) ] .~ = ( [ a ] .~ ( .r ` Q ) [ b ] .~ ) ) | 
						
							| 35 | 34 | eqcomd |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( [ a ] .~ ( .r ` Q ) [ b ] .~ ) = [ ( a .x. b ) ] .~ ) | 
						
							| 36 | 2 | adantr |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> I e. ( 2Ideal ` R ) ) | 
						
							| 37 | 3 6 | ressmulr |  |-  ( I e. ( 2Ideal ` R ) -> .x. = ( .r ` J ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> .x. = ( .r ` J ) ) | 
						
							| 39 | 38 | eqcomd |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .r ` J ) = .x. ) | 
						
							| 40 | 39 | oveqd |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( .1. .x. a ) ( .r ` J ) ( .1. .x. b ) ) = ( ( .1. .x. a ) .x. ( .1. .x. b ) ) ) | 
						
							| 41 | 1 2 3 4 5 6 7 | rngqiprnglinlem1 |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( .1. .x. a ) .x. ( .1. .x. b ) ) = ( .1. .x. ( a .x. b ) ) ) | 
						
							| 42 | 40 41 | eqtrd |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( .1. .x. a ) ( .r ` J ) ( .1. .x. b ) ) = ( .1. .x. ( a .x. b ) ) ) | 
						
							| 43 | 35 42 | opeq12d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> <. ( [ a ] .~ ( .r ` Q ) [ b ] .~ ) , ( ( .1. .x. a ) ( .r ` J ) ( .1. .x. b ) ) >. = <. [ ( a .x. b ) ] .~ , ( .1. .x. ( a .x. b ) ) >. ) | 
						
							| 44 | 33 43 | eqtr2d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> <. [ ( a .x. b ) ] .~ , ( .1. .x. ( a .x. b ) ) >. = ( <. [ a ] .~ , ( .1. .x. a ) >. ( .r ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) ) | 
						
							| 45 | 1 | anim1i |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( R e. Rng /\ ( a e. B /\ b e. B ) ) ) | 
						
							| 46 |  | 3anass |  |-  ( ( R e. Rng /\ a e. B /\ b e. B ) <-> ( R e. Rng /\ ( a e. B /\ b e. B ) ) ) | 
						
							| 47 | 45 46 | sylibr |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( R e. Rng /\ a e. B /\ b e. B ) ) | 
						
							| 48 | 5 6 | rngcl |  |-  ( ( R e. Rng /\ a e. B /\ b e. B ) -> ( a .x. b ) e. B ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a .x. b ) e. B ) | 
						
							| 50 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv |  |-  ( ( ph /\ ( a .x. b ) e. B ) -> ( F ` ( a .x. b ) ) = <. [ ( a .x. b ) ] .~ , ( .1. .x. ( a .x. b ) ) >. ) | 
						
							| 51 | 49 50 | syldan |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a .x. b ) ) = <. [ ( a .x. b ) ] .~ , ( .1. .x. ( a .x. b ) ) >. ) | 
						
							| 52 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv |  |-  ( ( ph /\ a e. B ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) | 
						
							| 53 | 18 52 | sylan2 |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) | 
						
							| 54 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngimfv |  |-  ( ( ph /\ b e. B ) -> ( F ` b ) = <. [ b ] .~ , ( .1. .x. b ) >. ) | 
						
							| 55 | 23 54 | sylan2 |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` b ) = <. [ b ] .~ , ( .1. .x. b ) >. ) | 
						
							| 56 | 53 55 | oveq12d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( F ` a ) ( .r ` P ) ( F ` b ) ) = ( <. [ a ] .~ , ( .1. .x. a ) >. ( .r ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) ) | 
						
							| 57 | 44 51 56 | 3eqtr4d |  |-  ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) | 
						
							| 58 | 57 | ralrimivva |  |-  ( ph -> A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) |