Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|- ( ph -> R e. Rng ) |
2 |
|
rng2idlring.i |
|- ( ph -> I e. ( 2Ideal ` R ) ) |
3 |
|
rng2idlring.j |
|- J = ( R |`s I ) |
4 |
|
rng2idlring.u |
|- ( ph -> J e. Ring ) |
5 |
|
rng2idlring.b |
|- B = ( Base ` R ) |
6 |
|
rng2idlring.t |
|- .x. = ( .r ` R ) |
7 |
|
rng2idlring.1 |
|- .1. = ( 1r ` J ) |
8 |
|
rngqiprngim.g |
|- .~ = ( R ~QG I ) |
9 |
|
rngqiprngim.q |
|- Q = ( R /s .~ ) |
10 |
|
rngqiprngim.c |
|- C = ( Base ` Q ) |
11 |
|
rngqiprngim.p |
|- P = ( Q Xs. J ) |
12 |
|
rngqiprngim.f |
|- F = ( x e. B |-> <. [ x ] .~ , ( .1. .x. x ) >. ) |
13 |
|
eqid |
|- ( Base ` Q ) = ( Base ` Q ) |
14 |
|
eqid |
|- ( Base ` J ) = ( Base ` J ) |
15 |
9
|
ovexi |
|- Q e. _V |
16 |
15
|
a1i |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> Q e. _V ) |
17 |
4
|
adantr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> J e. Ring ) |
18 |
|
simpl |
|- ( ( a e. B /\ b e. B ) -> a e. B ) |
19 |
8 9 5 13
|
quseccl0 |
|- ( ( R e. Rng /\ a e. B ) -> [ a ] .~ e. ( Base ` Q ) ) |
20 |
1 18 19
|
syl2an |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ a ] .~ e. ( Base ` Q ) ) |
21 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|- ( ( ph /\ a e. B ) -> ( .1. .x. a ) e. ( Base ` J ) ) |
22 |
18 21
|
sylan2 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .1. .x. a ) e. ( Base ` J ) ) |
23 |
|
simpr |
|- ( ( a e. B /\ b e. B ) -> b e. B ) |
24 |
8 9 5 13
|
quseccl0 |
|- ( ( R e. Rng /\ b e. B ) -> [ b ] .~ e. ( Base ` Q ) ) |
25 |
1 23 24
|
syl2an |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ b ] .~ e. ( Base ` Q ) ) |
26 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|- ( ( ph /\ b e. B ) -> ( .1. .x. b ) e. ( Base ` J ) ) |
27 |
23 26
|
sylan2 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .1. .x. b ) e. ( Base ` J ) ) |
28 |
1 2 3 4 5 6 7 8 9
|
rngqiprnglinlem3 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( [ a ] .~ ( .r ` Q ) [ b ] .~ ) e. ( Base ` Q ) ) |
29 |
|
eqid |
|- ( .r ` J ) = ( .r ` J ) |
30 |
14 29 17 22 27
|
ringcld |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( .1. .x. a ) ( .r ` J ) ( .1. .x. b ) ) e. ( Base ` J ) ) |
31 |
|
eqid |
|- ( .r ` Q ) = ( .r ` Q ) |
32 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
33 |
11 13 14 16 17 20 22 25 27 28 30 31 29 32
|
xpsmul |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( <. [ a ] .~ , ( .1. .x. a ) >. ( .r ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) = <. ( [ a ] .~ ( .r ` Q ) [ b ] .~ ) , ( ( .1. .x. a ) ( .r ` J ) ( .1. .x. b ) ) >. ) |
34 |
1 2 3 4 5 6 7 8 9
|
rngqiprnglinlem2 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> [ ( a .x. b ) ] .~ = ( [ a ] .~ ( .r ` Q ) [ b ] .~ ) ) |
35 |
34
|
eqcomd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( [ a ] .~ ( .r ` Q ) [ b ] .~ ) = [ ( a .x. b ) ] .~ ) |
36 |
2
|
adantr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> I e. ( 2Ideal ` R ) ) |
37 |
3 6
|
ressmulr |
|- ( I e. ( 2Ideal ` R ) -> .x. = ( .r ` J ) ) |
38 |
36 37
|
syl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> .x. = ( .r ` J ) ) |
39 |
38
|
eqcomd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( .r ` J ) = .x. ) |
40 |
39
|
oveqd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( .1. .x. a ) ( .r ` J ) ( .1. .x. b ) ) = ( ( .1. .x. a ) .x. ( .1. .x. b ) ) ) |
41 |
1 2 3 4 5 6 7
|
rngqiprnglinlem1 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( .1. .x. a ) .x. ( .1. .x. b ) ) = ( .1. .x. ( a .x. b ) ) ) |
42 |
40 41
|
eqtrd |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( .1. .x. a ) ( .r ` J ) ( .1. .x. b ) ) = ( .1. .x. ( a .x. b ) ) ) |
43 |
35 42
|
opeq12d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> <. ( [ a ] .~ ( .r ` Q ) [ b ] .~ ) , ( ( .1. .x. a ) ( .r ` J ) ( .1. .x. b ) ) >. = <. [ ( a .x. b ) ] .~ , ( .1. .x. ( a .x. b ) ) >. ) |
44 |
33 43
|
eqtr2d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> <. [ ( a .x. b ) ] .~ , ( .1. .x. ( a .x. b ) ) >. = ( <. [ a ] .~ , ( .1. .x. a ) >. ( .r ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) ) |
45 |
1
|
anim1i |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( R e. Rng /\ ( a e. B /\ b e. B ) ) ) |
46 |
|
3anass |
|- ( ( R e. Rng /\ a e. B /\ b e. B ) <-> ( R e. Rng /\ ( a e. B /\ b e. B ) ) ) |
47 |
45 46
|
sylibr |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( R e. Rng /\ a e. B /\ b e. B ) ) |
48 |
5 6
|
rngcl |
|- ( ( R e. Rng /\ a e. B /\ b e. B ) -> ( a .x. b ) e. B ) |
49 |
47 48
|
syl |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( a .x. b ) e. B ) |
50 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|- ( ( ph /\ ( a .x. b ) e. B ) -> ( F ` ( a .x. b ) ) = <. [ ( a .x. b ) ] .~ , ( .1. .x. ( a .x. b ) ) >. ) |
51 |
49 50
|
syldan |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a .x. b ) ) = <. [ ( a .x. b ) ] .~ , ( .1. .x. ( a .x. b ) ) >. ) |
52 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|- ( ( ph /\ a e. B ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) |
53 |
18 52
|
sylan2 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` a ) = <. [ a ] .~ , ( .1. .x. a ) >. ) |
54 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|- ( ( ph /\ b e. B ) -> ( F ` b ) = <. [ b ] .~ , ( .1. .x. b ) >. ) |
55 |
23 54
|
sylan2 |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` b ) = <. [ b ] .~ , ( .1. .x. b ) >. ) |
56 |
53 55
|
oveq12d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( ( F ` a ) ( .r ` P ) ( F ` b ) ) = ( <. [ a ] .~ , ( .1. .x. a ) >. ( .r ` P ) <. [ b ] .~ , ( .1. .x. b ) >. ) ) |
57 |
44 51 56
|
3eqtr4d |
|- ( ( ph /\ ( a e. B /\ b e. B ) ) -> ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) |
58 |
57
|
ralrimivva |
|- ( ph -> A. a e. B A. b e. B ( F ` ( a .x. b ) ) = ( ( F ` a ) ( .r ` P ) ( F ` b ) ) ) |