Step |
Hyp |
Ref |
Expression |
1 |
|
rng2idlring.r |
|
2 |
|
rng2idlring.i |
|
3 |
|
rng2idlring.j |
|
4 |
|
rng2idlring.u |
|
5 |
|
rng2idlring.b |
|
6 |
|
rng2idlring.t |
|
7 |
|
rng2idlring.1 |
|
8 |
|
rngqiprngim.g |
|
9 |
|
rngqiprngim.q |
|
10 |
|
rngqiprngim.c |
|
11 |
|
rngqiprngim.p |
|
12 |
|
rngqiprngim.f |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
9
|
ovexi |
|
16 |
15
|
a1i |
|
17 |
4
|
adantr |
|
18 |
|
simpl |
|
19 |
8 9 5 13
|
quseccl0 |
|
20 |
1 18 19
|
syl2an |
|
21 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|
22 |
18 21
|
sylan2 |
|
23 |
|
simpr |
|
24 |
8 9 5 13
|
quseccl0 |
|
25 |
1 23 24
|
syl2an |
|
26 |
1 2 3 4 5 6 7
|
rngqiprngghmlem1 |
|
27 |
23 26
|
sylan2 |
|
28 |
1 2 3 4 5 6 7 8 9
|
rngqiprnglinlem3 |
|
29 |
|
eqid |
|
30 |
14 29 17 22 27
|
ringcld |
|
31 |
|
eqid |
|
32 |
|
eqid |
|
33 |
11 13 14 16 17 20 22 25 27 28 30 31 29 32
|
xpsmul |
|
34 |
1 2 3 4 5 6 7 8 9
|
rngqiprnglinlem2 |
|
35 |
34
|
eqcomd |
|
36 |
2
|
adantr |
|
37 |
3 6
|
ressmulr |
|
38 |
36 37
|
syl |
|
39 |
38
|
eqcomd |
|
40 |
39
|
oveqd |
|
41 |
1 2 3 4 5 6 7
|
rngqiprnglinlem1 |
|
42 |
40 41
|
eqtrd |
|
43 |
35 42
|
opeq12d |
|
44 |
33 43
|
eqtr2d |
|
45 |
1
|
anim1i |
|
46 |
|
3anass |
|
47 |
45 46
|
sylibr |
|
48 |
5 6
|
rngcl |
|
49 |
47 48
|
syl |
|
50 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|
51 |
49 50
|
syldan |
|
52 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|
53 |
18 52
|
sylan2 |
|
54 |
1 2 3 4 5 6 7 8 9 10 11 12
|
rngqiprngimfv |
|
55 |
23 54
|
sylan2 |
|
56 |
53 55
|
oveq12d |
|
57 |
44 51 56
|
3eqtr4d |
|
58 |
57
|
ralrimivva |
|