Metamath Proof Explorer


Theorem rngqiprnglin

Description: F is linear with respect to the multiplication. (Contributed by AV, 28-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
rngqiprngim.c C = Base Q
rngqiprngim.p P = Q × 𝑠 J
rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
Assertion rngqiprnglin φ a B b B F a · ˙ b = F a P F b

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 rngqiprngim.c C = Base Q
11 rngqiprngim.p P = Q × 𝑠 J
12 rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
13 eqid Base Q = Base Q
14 eqid Base J = Base J
15 9 ovexi Q V
16 15 a1i φ a B b B Q V
17 4 adantr φ a B b B J Ring
18 simpl a B b B a B
19 8 9 5 13 quseccl0 R Rng a B a ˙ Base Q
20 1 18 19 syl2an φ a B b B a ˙ Base Q
21 1 2 3 4 5 6 7 rngqiprngghmlem1 φ a B 1 ˙ · ˙ a Base J
22 18 21 sylan2 φ a B b B 1 ˙ · ˙ a Base J
23 simpr a B b B b B
24 8 9 5 13 quseccl0 R Rng b B b ˙ Base Q
25 1 23 24 syl2an φ a B b B b ˙ Base Q
26 1 2 3 4 5 6 7 rngqiprngghmlem1 φ b B 1 ˙ · ˙ b Base J
27 23 26 sylan2 φ a B b B 1 ˙ · ˙ b Base J
28 1 2 3 4 5 6 7 8 9 rngqiprnglinlem3 φ a B b B a ˙ Q b ˙ Base Q
29 eqid J = J
30 14 29 17 22 27 ringcld φ a B b B 1 ˙ · ˙ a J 1 ˙ · ˙ b Base J
31 eqid Q = Q
32 eqid P = P
33 11 13 14 16 17 20 22 25 27 28 30 31 29 32 xpsmul φ a B b B a ˙ 1 ˙ · ˙ a P b ˙ 1 ˙ · ˙ b = a ˙ Q b ˙ 1 ˙ · ˙ a J 1 ˙ · ˙ b
34 1 2 3 4 5 6 7 8 9 rngqiprnglinlem2 φ a B b B a · ˙ b ˙ = a ˙ Q b ˙
35 34 eqcomd φ a B b B a ˙ Q b ˙ = a · ˙ b ˙
36 2 adantr φ a B b B I 2Ideal R
37 3 6 ressmulr I 2Ideal R · ˙ = J
38 36 37 syl φ a B b B · ˙ = J
39 38 eqcomd φ a B b B J = · ˙
40 39 oveqd φ a B b B 1 ˙ · ˙ a J 1 ˙ · ˙ b = 1 ˙ · ˙ a · ˙ 1 ˙ · ˙ b
41 1 2 3 4 5 6 7 rngqiprnglinlem1 φ a B b B 1 ˙ · ˙ a · ˙ 1 ˙ · ˙ b = 1 ˙ · ˙ a · ˙ b
42 40 41 eqtrd φ a B b B 1 ˙ · ˙ a J 1 ˙ · ˙ b = 1 ˙ · ˙ a · ˙ b
43 35 42 opeq12d φ a B b B a ˙ Q b ˙ 1 ˙ · ˙ a J 1 ˙ · ˙ b = a · ˙ b ˙ 1 ˙ · ˙ a · ˙ b
44 33 43 eqtr2d φ a B b B a · ˙ b ˙ 1 ˙ · ˙ a · ˙ b = a ˙ 1 ˙ · ˙ a P b ˙ 1 ˙ · ˙ b
45 1 anim1i φ a B b B R Rng a B b B
46 3anass R Rng a B b B R Rng a B b B
47 45 46 sylibr φ a B b B R Rng a B b B
48 5 6 rngcl R Rng a B b B a · ˙ b B
49 47 48 syl φ a B b B a · ˙ b B
50 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φ a · ˙ b B F a · ˙ b = a · ˙ b ˙ 1 ˙ · ˙ a · ˙ b
51 49 50 syldan φ a B b B F a · ˙ b = a · ˙ b ˙ 1 ˙ · ˙ a · ˙ b
52 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φ a B F a = a ˙ 1 ˙ · ˙ a
53 18 52 sylan2 φ a B b B F a = a ˙ 1 ˙ · ˙ a
54 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngimfv φ b B F b = b ˙ 1 ˙ · ˙ b
55 23 54 sylan2 φ a B b B F b = b ˙ 1 ˙ · ˙ b
56 53 55 oveq12d φ a B b B F a P F b = a ˙ 1 ˙ · ˙ a P b ˙ 1 ˙ · ˙ b
57 44 51 56 3eqtr4d φ a B b B F a · ˙ b = F a P F b
58 57 ralrimivva φ a B b B F a · ˙ b = F a P F b