Description: F is a homomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rng2idlring.r | |
|
rng2idlring.i | |
||
rng2idlring.j | |
||
rng2idlring.u | |
||
rng2idlring.b | |
||
rng2idlring.t | |
||
rng2idlring.1 | |
||
rngqiprngim.g | |
||
rngqiprngim.q | |
||
rngqiprngim.c | |
||
rngqiprngim.p | |
||
rngqiprngim.f | |
||
Assertion | rngqiprngho | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rng2idlring.r | |
|
2 | rng2idlring.i | |
|
3 | rng2idlring.j | |
|
4 | rng2idlring.u | |
|
5 | rng2idlring.b | |
|
6 | rng2idlring.t | |
|
7 | rng2idlring.1 | |
|
8 | rngqiprngim.g | |
|
9 | rngqiprngim.q | |
|
10 | rngqiprngim.c | |
|
11 | rngqiprngim.p | |
|
12 | rngqiprngim.f | |
|
13 | 1 2 3 4 5 6 7 8 9 10 11 | rngqiprng | |
14 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprngghm | |
15 | 1 2 3 4 5 6 7 8 9 10 11 12 | rngqiprnglin | |
16 | 14 15 | jca | |
17 | eqid | |
|
18 | 5 6 17 | isrnghm | |
19 | 1 13 16 18 | syl21anbrc | |