Metamath Proof Explorer


Theorem rngqiprngho

Description: F is a homomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
rngqiprngim.g ˙=R~QGI
rngqiprngim.q Q=R/𝑠˙
rngqiprngim.c C=BaseQ
rngqiprngim.p P=Q×𝑠J
rngqiprngim.f F=xBx˙1˙·˙x
Assertion rngqiprngho φFRRngHomP

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 rngqiprngim.g ˙=R~QGI
9 rngqiprngim.q Q=R/𝑠˙
10 rngqiprngim.c C=BaseQ
11 rngqiprngim.p P=Q×𝑠J
12 rngqiprngim.f F=xBx˙1˙·˙x
13 1 2 3 4 5 6 7 8 9 10 11 rngqiprng φPRng
14 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngghm φFRGrpHomP
15 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprnglin φaBbBFa·˙b=FaPFb
16 14 15 jca φFRGrpHomPaBbBFa·˙b=FaPFb
17 eqid P=P
18 5 6 17 isrnghm FRRngHomPRRngPRngFRGrpHomPaBbBFa·˙b=FaPFb
19 1 13 16 18 syl21anbrc φFRRngHomP